464 research outputs found

    Generation of large-scale winds in horizontally anisotropic convection

    Full text link
    We simulate three-dimensional, horizontally periodic Rayleigh-B\'enard convection between free-slip horizontal plates, rotating about a distant horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind

    Statistical analysis of three series of daily rainfall in North-Western Italy

    Get PDF
    In this work we study three long series of daily rainfall measured in North-Western Italy. We analyze the global statistical properties of the three data sets and we discuss both the seasonal distribution of rainfall intensity and the long-term variation in rainfall properties. We show that the three series display a vanishingly small autocorrelation for periods longer than one or two days, consistent with the absence of multifractality in these records. These time series are largely consistent with the output of a simple chain-dependent stochastic process

    Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems

    Get PDF
    We show that, even in the most favorable case, the motion of a small spherical tracer suspended in a fluid of the same density may differ from the corresponding motion of an ideal passive particle. We demonstrate furthermore how its dynamics may be applied to target trajectories in Hamiltonian systems.Comment: See home page http://lec.ugr.es/~julya

    Don't bleach chaotic data

    Full text link
    A common first step in time series signal analysis involves digitally filtering the data to remove linear correlations. The residual data is spectrally white (it is ``bleached''), but in principle retains the nonlinear structure of the original time series. It is well known that simple linear autocorrelation can give rise to spurious results in algorithms for estimating nonlinear invariants, such as fractal dimension and Lyapunov exponents. In theory, bleached data avoids these pitfalls. But in practice, bleaching obscures the underlying deterministic structure of a low-dimensional chaotic process. This appears to be a property of the chaos itself, since nonchaotic data are not similarly affected. The adverse effects of bleaching are demonstrated in a series of numerical experiments on known chaotic data. Some theoretical aspects are also discussed.Comment: 12 dense pages (82K) of ordinary LaTeX; uses macro psfig.tex for inclusion of figures in text; figures are uufile'd into a single file of size 306K; the final dvips'd postscript file is about 1.3mb Replaced 9/30/93 to incorporate final changes in the proofs and to make the LaTeX more portable; the paper will appear in CHAOS 4 (Dec, 1993

    Aquifer recharge in the Piedmont Alpine zone: Historical trends and future scenarios

    Get PDF
    The spatial and temporal variability of air temperature, precipitation, actual evapotranspiration (AET) and their related water balance components, as well as their responses to anthropogenic climate change, provide fundamental information for an effective management of water resources and for a proactive involvement of users and stakeholders, in order to develop and apply adaptation and mitigation strategies at the local level. In this study, using an interdisciplinary research approach tailored to water management needs, we evaluate the past, present and future quantity of water potentially available for drinking supply in the water catchments feeding the about 2.3 million inhabitants of the Turin metropolitan area (the former Province of Turin, north-western Italy), considering climatologies at the quarterly and yearly timescales. Observed daily maximum surface air temperature and precipitation data from 1959 to 2017 were analysed to assess historical trends, their significance and the possible cross-correlations between the water balance components. Regional climate model (RCM) simulations from a small ensemble were analysed to provide mid-century projections of the difference between precipitation and AET for the area of interest in the future CMIP5 scenarios RCP4.5 (stabilization) and RCP8.5 (business as usual). Temporal and spatial variations in recharge were approximated with variations of drainage. The impact of irrigation, and of snowpack variability, on the latter was also assessed. The other terms of water balance were disregarded because they are affected by higher uncertainty. The analysis over the historical period indicated that the driest area of the study region displayed significant negative annual (and spring) trends of both precipitation and drainage. Results from field experiments were used to model irrigation, and we found that relatively wetter watersheds in the northern and in the southern parts behave differently, with a significant increase of AET due to irrigation. The analysis of future projections suggested almost stationary conditions for annual data. Regarding quarterly data, a slight decrease in summer drainage was found in three out of five models in both emission scenarios. The RCM ensemble exhibits a large spread in the representation of the future drainage trends. The large interannual variability of precipitation was also quantified and identified as a relevant risk factor for water management, expected to play a major role also in future decades

    Peer review and the publication process

    Get PDF
    Aims: To provide an overview of the peer review process, its various types, selection of peer reviewers, the purpose and significance of the peer review with regard to the assessment and management of quality of publications in academic journals. Design: Discussion paper. Methods: This paper draws on information gained from literature on the peer review process and the authors' knowledge and experience of contributing as peer reviewers and editors in the field of health care, including nursing. Results: There are various types of peer review: single blind; double blind; open; and post-publication review. The role of the reviewers in reviewing manuscripts and their contribution to the scientific and academic community remains important

    Chaos or Noise - Difficulties of a Distinction

    Full text link
    In experiments, the dynamical behavior of systems is reflected in time series. Due to the finiteness of the observational data set it is not possible to reconstruct the invariant measure up to arbitrary fine resolution and arbitrary high embedding dimension. These restrictions limit our ability to distinguish between signals generated by different systems, such as regular, chaotic or stochastic ones, when analyzed from a time series point of view. We propose to classify the signal behavior, without referring to any specific model, as stochastic or deterministic on a certain scale of the resolution ϵ\epsilon, according to the dependence of the (ϵ,τ)(\epsilon,\tau)-entropy, h(ϵ,τ)h(\epsilon, \tau), and of the finite size Lyapunov exponent, λ(ϵ)\lambda(\epsilon), on ϵ\epsilon.Comment: 24 pages RevTeX, 9 eps figures included, two references added, minor corrections, one section has been split in two (submitted to PRE

    Influence of Comorbidity on Racial Differences in Receipt of Surgery Among US Veterans With Early-Stage Non–Small-Cell Lung Cancer

    Get PDF
    It is unclear why racial differences exist in the frequency of surgery for lung cancer treatment. Comorbidity is an important consideration in selection of patients for lung cancer treatment, including surgery. To assess whether comorbidity contributes to the observed racial differences, we evaluated racial differences in the prevalence of comorbidity and their impact on receipt of surgery

    Relativistic cosmological perturbation scheme on a general background: scalar perturbations for irrotational dust

    Full text link
    In standard perturbation approaches and N-body simulations, inhomogeneities are described to evolve on a predefined background cosmology, commonly taken as the homogeneous-isotropic solutions of Einstein's field equations (Friedmann-Lema\^itre-Robertson-Walker (FLRW) cosmologies). In order to make physical sense, this background cosmology must provide a reasonable description of the effective, i.e. spatially averaged, evolution of structure inhomogeneities also in the nonlinear regime. Guided by the insights that (i) the average over an inhomogeneous distribution of matter and geometry is in general not given by a homogeneous solution of general relativity, and that (ii) the class of FLRW cosmologies is not only locally but also globally gravitationally unstable in relevant cases, we here develop a perturbation approach that describes the evolution of inhomogeneities on a general background being defined by the spatially averaged evolution equations. This physical background interacts with the formation of structures. We derive and discuss the resulting perturbation scheme for the matter model `irrotational dust' in the Lagrangian picture, restricting our attention to scalar perturbations.Comment: 18 pages. Matches published version in CQ
    • …
    corecore