1,130 research outputs found

    Pro-inflammatory polarization and colorectal cancer modulate alternative and intronic polyadenylation in primary human macrophages

    Get PDF
    Macrophages are essential cells of the immune system that alter their inflammatory profile depending on their microenvironment. Alternative polyadenylation in the 3'UTR (3'UTR-APA) and intronic polyadenylation (IPA) are mechanisms that modulate gene expression, in particular in cancer and activated immune cells. Yet, how polarization and colorectal cancer (CRC) cells microenvironment affect 3'UTR-APA and IPA in primary human macrophages remains unknown. Here, primary human monocytes were isolated from healthy donors, differentiated and polarized into a pro-inflammatory state and ChrRNA-Seq and 3'RNA-Seq were performed to quantify gene expression and characterize new 3’UTR-APA and IPA mRNA isoforms. Our results show that polarization of human macrophages from naïve to a pro-inflammatory state causes a marked increase both in proximal polyA site selection in the 3'UTR and in IPA events, in genes relevant for macrophage functions. Additionally, we found a negative correlation between differential gene expression and IPA during pro-inflammatory polarization of primary human macrophages. As macrophages are abundant immune cells in the CRC microenvironment that either promote or abrogate cancer progression, we investigated how indirect exposure to CRC cells affects macrophage gene expression and 3'UTR-APA and IPA mRNA events. Co-culture with CRC cells alters the inflammatory phenotype of macrophages, increases the expression of pro tumoral genes and induce 3’UTR-APA alterations. Notably, some of these gene expression differences were also found in tumour-associated macrophages of CRC patients, indicating that they are physiological relevant. Upon macrophage pro inflammatory polarization SRSF12 is the pre-mRNA processing gene that is most upregulated. After SRSF12 knockdown in M1 macrophages there is a global downregulation of gene expression, in particular in genes involved in gene expression regulation and in immune responses. Our results reveal new 48 3’UTR-APA and IPA mRNA isoforms produced during pro-inflammatory polarization of primary human macrophages and CRC co-culture that may be used in the future as diagnostic or therapeutic tools

    Genome-wide polyadenylation site mapping datasets in the rice blast fungus Magnaporthe oryzae

    Get PDF
    Polyadenylation plays an important role in gene regulation, thus affecting a wide variety of biological processes. In the rice blast fungus Magnaporthe oryzae the cleavage factor I protein Rpb35 is required for pre-mRNA polyadenylation and fungal virulence. Here we present the bioinformatic approach and output data related to a global survey of polyadenylation site usage in M. oryzae wild-type and Delta rbp35 strains under a variety of nutrient conditions, some of which simulate the conditions experienced by the fungus during part of its infection cycle

    D-branes Wrapped on Fuzzy del Pezzo Surfaces

    Full text link
    We construct classical solutions in quiver gauge theories on D0-branes probing toric del Pezzo singularities in Calabi-Yau manifolds. Our solutions represent D4-branes wrapped around fuzzy del Pezzo surfaces. We study the fluctuation spectrum around the fuzzy CP^2 solution in detail. We also comment on possible applications of our fuzzy del Pezzo surfaces to the fuzzy version of F-theory, dubbed F(uzz) theory.Comment: 1+42 pages, 9 figures v2: references added v3: statements on the structure of the Yukawa couplings weakened. published versio

    RNA Polymerase II Pausing Downstream of Core Histone Genes Is Different from Genes Producing Polyadenylated Transcripts

    Get PDF
    Recent genome-wide chromatin immunoprecipitation coupled high throughput sequencing (ChIP-seq) analyses performed in various eukaryotic organisms, analysed RNA Polymerase II (Pol II) pausing around the transcription start sites of genes. In this study we have further investigated genome-wide binding of Pol II downstream of the 3′ end of the annotated genes (EAGs) by ChIP-seq in human cells. At almost all expressed genes we observed Pol II occupancy downstream of the EAGs suggesting that Pol II pausing 3′ from the transcription units is a rather common phenomenon. Downstream of EAGs Pol II transcripts can also be detected by global run-on and sequencing, suggesting the presence of functionally active Pol II. Based on Pol II occupancy downstream of EAGs we could distinguish distinct clusters of Pol II pause patterns. On core histone genes, coding for non-polyadenylated transcripts, Pol II occupancy is quickly dropping after the EAG. In contrast, on genes, whose transcripts undergo polyA tail addition [poly(A)+], Pol II occupancy downstream of the EAGs can be detected up to 4–6 kb. Inhibition of polyadenylation significantly increased Pol II occupancy downstream of EAGs at poly(A)+ genes, but not at the EAGs of core histone genes. The differential genome-wide Pol II occupancy profiles 3′ of the EAGs have also been confirmed in mouse embryonic stem (mES) cells, indicating that Pol II pauses genome-wide downstream of the EAGs in mammalian cells. Moreover, in mES cells the sharp drop of Pol II signal at the EAG of core histone genes seems to be independent of the phosphorylation status of the C-terminal domain of the large subunit of Pol II. Thus, our study uncovers a potential link between different mRNA 3′ end processing mechanisms and consequent Pol II transcription termination processes

    Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Get PDF
    Background: Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results: Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion: We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution

    Unphosphorylated SR-Like Protein Npl3 Stimulates RNA Polymerase II Elongation

    Get PDF
    The production of a functional mRNA is regulated at every step of transcription. An area not well-understood is the transition of RNA polymerase II from elongation to termination. The S. cerevisiae SR-like protein Npl3 functions to negatively regulate transcription termination by antagonizing the binding of polyA/termination proteins to the mRNA. In this study, Npl3 is shown to interact with the CTD and have a direct stimulatory effect on the elongation activity of the polymerase. The interaction is inhibited by phosphorylation of Npl3. In addition, Casein Kinase 2 was found to be required for the phosphorylation of Npl3 and affect its ability to compete against Rna15 (Cleavage Factor I) for binding to polyA signals. Our results suggest that phosphorylation of Npl3 promotes its dissociation from the mRNA/RNAP II, and contributes to the association of the polyA/termination factor Rna15. This work defines a novel role for Npl3 in elongation and its regulation by phosphorylation

    A review of web-based support systems for students in higher education

    Get PDF
    Abstract Background Recent evidence suggests that there is an increasing need for accessible and anonymous services to support higher education (HE) students suffering from psychological and/or academic difficulties. Such difficulties can lead to several negative outcomes, including poor academic performance, sub-optimal mental health, reduced study satisfaction, and dropout from study. Currently, universities in the UK lack financial resources and the on-campus mental health services traditionally offered to students are increasingly economically unsustainable. Compounded by the perceived stigma of using such services, mental health providers have been driven to address the escalating needs of students through online services. Methods In this paper, we review online support systems identified through a literature search and a manual search of references in the identified papers. Further systems were identified through web searches, and systems still in development were identified by consultation with researchers in the field. We accessed systems online to extract relevant information, regarding the main difficulties addressed by the systems, the psychological techniques used and any relevant research evidence to support their effectiveness. Conclusion A large number of web-based support systems have been developed to support mental health and wellbeing, although few specifically target HE students. Further research is necessary to establish the effectiveness of such interventions in providing a cost-effective alternative to face-to-face therapy, particularly in certain settings such as HE institutions

    Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs

    Get PDF
    MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript processing is largely uncharacterized. Here, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis, we show that most lnc-pri-miRNA do not use the canonical cleavage and polyadenylation (CPA) pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a novel RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells

    Optical Control of Mammalian Endogenous Transcription and Epigenetic States

    Get PDF
    The dynamic nature of gene expression enables cellular programming, homeostasis, and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high precision spatiotemporal control of many cellular functions1-11. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here, we describe the development of Light-Inducible Transcriptional Effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain12-14 with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical co-factors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility3,4,6,7,15. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of awake mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states

    Computational genes: a tool for molecular diagnosis and therapy of aberrant mutational phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A finite state machine manipulating information-carrying DNA strands can be used to perform autonomous molecular-scale computations at the cellular level.</p> <p>Results</p> <p>We propose a new finite state machine able to detect and correct aberrant molecular phenotype given by mutated genetic transcripts. The aberrant mutations trigger a cascade reaction: specific molecular markers as input are released and induce a spontaneous self-assembly of a wild type protein or peptide, while the mutational disease phenotype is silenced. We experimentally demostrated in <it>in vitro </it>translation system that a viable protein can be autonomously assembled.</p> <p>Conclusion</p> <p>Our work demostrates the basic principles of computational genes and particularly, their potential to detect mutations, and as a response thereafter administer an output that suppresses the aberrant disease phenotype and/or restores the lost physiological function.</p
    • …
    corecore