9 research outputs found

    Investigating the genetic relationship between Alzheimer's disease and cancer using GWAS summary statistics.

    Get PDF
    Growing evidence from both epidemiology and basic science suggest an inverse association between Alzheimer's disease (AD) and cancer. We examined the genetic relationship between AD and various cancer types using GWAS summary statistics from the IGAP and GAME-ON consortia. Sample size ranged from 9931 to 54,162; SNPs were imputed to the 1000 Genomes European panel. Our results based on cross-trait LD Score regression showed a significant positive genetic correlation between AD and five cancers combined (colon, breast, prostate, ovarian, lung; r g = 0.17, P = 0.04), and specifically with breast cancer (ER-negative and overall; r g = 0.21 and 0.18, P = 0.035 and 0.034) and lung cancer (adenocarcinoma, squamous cell carcinoma and overall; r g = 0.31, 0.38 and 0.30, P = 0.029, 0.016, and 0.006). Estimating the genetic correlation in specific functional categories revealed mixed positive and negative signals, notably stronger at annotations associated with increased enhancer activity. This suggests a role of gene expression regulators in the shared genetic etiology between AD and cancer, and that some shared variants modulate disease risk concordantly while others have effects in opposite directions. Due to power issues, we did not detect cross-phenotype associations at individual SNPs. This genetic overlap is not likely driven by a handful of major loci. Our study is the first to examine the co-heritability of AD and cancer leveraging large-scale GWAS results. The functional categories highlighted in this study need further investigation to illustrate the details of the genetic sharing and to bridge between different levels of associations

    Association between Adult Height and Risk of Colorectal, Lung, and Prostate Cancer: Results from Meta-analyses of Prospective Studies and Mendelian Randomization Analyses.

    Get PDF
    BACKGROUND: Observational studies examining associations between adult height and risk of colorectal, prostate, and lung cancers have generated mixed results. We conducted meta-analyses using data from prospective cohort studies and further carried out Mendelian randomization analyses, using height-associated genetic variants identified in a genome-wide association study (GWAS), to evaluate the association of adult height with these cancers. METHODS AND FINDINGS: A systematic review of prospective studies was conducted using the PubMed, Embase, and Web of Science databases. Using meta-analyses, results obtained from 62 studies were summarized for the association of a 10-cm increase in height with cancer risk. Mendelian randomization analyses were conducted using summary statistics obtained for 423 genetic variants identified from a recent GWAS of adult height and from a cancer genetics consortium study of multiple cancers that included 47,800 cases and 81,353 controls. For a 10-cm increase in height, the summary relative risks derived from the meta-analyses of prospective studies were 1.12 (95% CI 1.10, 1.15), 1.07 (95% CI 1.05, 1.10), and 1.06 (95% CI 1.02, 1.11) for colorectal, prostate, and lung cancers, respectively. Mendelian randomization analyses showed increased risks of colorectal (odds ratio [OR] = 1.58, 95% CI 1.14, 2.18) and lung cancer (OR = 1.10, 95% CI 1.00, 1.22) associated with each 10-cm increase in genetically predicted height. No association was observed for prostate cancer (OR = 1.03, 95% CI 0.92, 1.15). Our meta-analysis was limited to published studies. The sample size for the Mendelian randomization analysis of colorectal cancer was relatively small, thus affecting the precision of the point estimate. CONCLUSIONS: Our study provides evidence for a potential causal association of adult height with the risk of colorectal and lung cancers and suggests that certain genetic factors and biological pathways affecting adult height may also affect the risk of these cancers.US NIH (Grant ID: R37CA070867), Ingram Professorship, Anne Potter Wilson , National Institutes of Health (Grant IDs: R25CA160056-03, U19CA148065, U19CA148107, U19CA148127, U19CA148537, Cancer Research UK, Prostate Cancer UK, The Institute of Cancer Research, Royal Marsden Biomedical Research Centre, National Institute of Health Research (Grant ID: C5047/A17528)This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pmed.100211

    Common variants near MC4R are associated with fat mass, weight and risk of obesity.

    Get PDF
    To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits

    Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers

    Get PDF
    Abstract: Genome-wide association studies (GWAS) have led to the identification of hundreds of susceptibility loci across cancers, but the impact of further studies remains uncertain. Here we analyse summary-level data from GWAS of European ancestry across fourteen cancer sites to estimate the number of common susceptibility variants (polygenicity) and underlying effect-size distribution. All cancers show a high degree of polygenicity, involving at a minimum of thousands of loci. We project that sample sizes required to explain 80% of GWAS heritability vary from 60,000 cases for testicular to over 1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th risk percentile of underlying polygenic risk scores (PRS), compared to average risk, ranges from 12 for testicular to 2.5 for ovarian cancer. We show that PRS have potential for risk stratification for cancers of breast, colon and prostate, but less so for others because of modest heritability and lower incidence

    Association between Adult Height and Risk of Colorectal, Lung, and Prostate Cancer: Results from Meta-analyses of Prospective Studies and Mendelian Randomization Analyses

    No full text
    BACKGROUND:Observational studies examining associations between adult height and risk of colorectal, prostate, and lung cancers have generated mixed results. We conducted meta-analyses using data from prospective cohort studies and further carried out Mendelian randomization analyses, using height-associated genetic variants identified in a genome-wide association study (GWAS), to evaluate the association of adult height with these cancers. METHODS AND FINDINGS:A systematic review of prospective studies was conducted using the PubMed, Embase, and Web of Science databases. Using meta-analyses, results obtained from 62 studies were summarized for the association of a 10-cm increase in height with cancer risk. Mendelian randomization analyses were conducted using summary statistics obtained for 423 genetic variants identified from a recent GWAS of adult height and from a cancer genetics consortium study of multiple cancers that included 47,800 cases and 81,353 controls. For a 10-cm increase in height, the summary relative risks derived from the meta-analyses of prospective studies were 1.12 (95% CI 1.10, 1.15), 1.07 (95% CI 1.05, 1.10), and 1.06 (95% CI 1.02, 1.11) for colorectal, prostate, and lung cancers, respectively. Mendelian randomization analyses showed increased risks of colorectal (odds ratio [OR] = 1.58, 95% CI 1.14, 2.18) and lung cancer (OR = 1.10, 95% CI 1.00, 1.22) associated with each 10-cm increase in genetically predicted height. No association was observed for prostate cancer (OR = 1.03, 95% CI 0.92, 1.15). Our meta-analysis was limited to published studies. The sample size for the Mendelian randomization analysis of colorectal cancer was relatively small, thus affecting the precision of the point estimate. CONCLUSIONS:Our study provides evidence for a potential causal association of adult height with the risk of colorectal and lung cancers and suggests that certain genetic factors and biological pathways affecting adult height may also affect the risk of these cancers

    Investigating the genetic relationship between Alzheimer’s disease and cancer using GWAS summary statistics

    No full text
    Growing evidence from both epidemiology and basic science suggest an inverse association between Alzheimer’s disease (AD) and cancer. We examined the genetic relationship between AD and various cancer types using GWAS summary statistics from the IGAP and GAME-ON consortia. Sample size ranged from 9931 to 54,162; SNPs were imputed to the 1000 Genomes European panel. Our results based on cross-trait LD Score regression showed a significant positive genetic correlation between AD and five cancers combined (colon, breast, prostate, ovarian, lung; rg = 0.17, P = 0.04), and specifically with breast cancer (ER-negative and overall; rg = 0.21 and 0.18, P = 0.035 and 0.034) and lung cancer (adenocarcinoma, squamous cell carcinoma and overall; rg = 0.31, 0.38 and 0.30, P = 0.029, 0.016, and 0.006). Estimating the genetic correlation in specific functional categories revealed mixed positive and negative signals, notably stronger at annotations associated with increased enhancer activity. This suggests a role of gene expression regulators in the shared genetic etiology between AD and cancer, and that some shared variants modulate disease risk concordantly while others have effects in opposite directions. Due to power issues, we did not detect cross-phenotype associations at individual SNPs. This genetic overlap is not likely driven by a handful of major loci. Our study is the first to examine the co-heritability of AD and cancer leveraging large-scale GWAS results. The functional categories highlighted in this study need further investigation to illustrate the details of the genetic sharing and to bridge between different levels of associations

    Intake of Various Food Groups and Risk of Breast Cancer:A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies

    No full text
    Despite increasing evidence for the association of food-based dietary patterns with breast cancer risk, knowledge about the shape of the relationship and the quality of meta-evidence are insufficient. We aimed to summarize the associations between food groups and risks of breast cancer. We performed a systematic literature search of the PubMed and Embase databases up to March 2020. We included cohort, case-cohort, nested case-control studies, and follow-up studies of randomized controlled trials that investigated the relationship between breast cancer risk and at least 1 of the following food groups: red meat, processed meat, fish, poultry, egg, vegetables, fruit, dairy product (overall, milk, yogurt, and cheese), grains/cereals, nuts, legumes, soy, and sugar-sweetened beverages. Summary risk ratios (RRs) and 95% CIs were estimated using a random-effects model for linear and nonlinear relationships. Inverse linear associations were observed for vegetables (RR per 100 g/d, 0.97; 95% CI, 0.95–0.99), fruit (RR per 100 g/d, 0.97; 95% CI, 0.95–0.99), cheese (RR per 30 g/d, 0.95; 95% CI, 0.91–1.00), and soy (RR per 30 g/d, 0.96; 95% CI, 0.94–0.99), while positive associations were observed for red (RR per 100 g/d, 1.10; 95% CI, 1.03–1.18) and processed meat (RR per 50 g/d, 1.18; 95% CI, 1.04–1.33). None of the other food groups were significantly associated with breast cancer risk. A nonlinear association was observed only for milk, such that the intake of >450 g/d increased the risk, while no association was observed for lower intake amounts. High intakes of vegetables, fruit, cheese, and soy products and low intakes of red and processed meat were associated with lower risks of breast cancer. However, causality cannot be inferred from these statistical correlations
    corecore