102 research outputs found

    Reply to Comments on Effect of heating rate on kinetic parameters of beta-irradiated Li2B4O7:Cu,Ag,P in TSL measurements

    Get PDF
    We appreciate the opportunity to respond to comments regarding the paper published by Ege et al (2007 Effect of heating rate on kinetic parameters of beta-irradiated Li2B4O7: Cu, Ag, P in TSL measurements Meas. Sci. Technol. 18 889). We would like to thank the authors for taking the time to tell us about their opinion, but unfortunately we do not agree with them completely. In the article presented by Kumar and Chourasiya some comment is advanced to the analysis of the glow curves measured with different heating rates, presented in our recent study. According to our study, the area under the glow curve decreases with increasing heating rate in TL-temperature plots due to the quenching effects. Contrary to this, Kumar and Chourasiya suggest that this decrease is due to the normalization process. Here we hope to clarify any confusion regarding our published study

    Layered ferromagnet-superconductor structures: the π\pi state and proximity effects

    Full text link
    We investigate clean mutilayered structures of the SFS and SFSFS type, (where the S layer is intrinsically superconducting and the F layer is ferromagnetic) through numerical solution of the self-consistent Bogoliubov-de Gennes equations for these systems. We obtain results for the pair amplitude, the local density of states, and the local magnetic moment. We find that as a function of the thickness dFd_F of the magnetic layers separating adjacent superconductors, the ground state energy varies periodically between two stable states. The first state is an ordinary "0-state", in which the order parameter has a phase difference of zero between consecutive S layers, and the second is a "π\pi-state", where the sign alternates, corresponding to a phase difference of π\pi between adjacent S layers. This behavior can be understood from simple arguments. The density of states and the local magnetic moment reflect also this periodicity.Comment: 12 pages, 10 Figure

    Proximity effects and characteristic lengths in ferromagnet-superconductor structures

    Full text link
    We present an extensive theoretical investigation of the proximity effects that occur in Ferromagnet/Superconductor (F/SF/S) systems. We use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. We obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing the leakage of superconductivity into the magnet and to study spin splitting into the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wavevector mismatch, all of which turn out to have important influence on the results. These comprehensive results should help characterize and analyze future data and are shown to be in agreement with existing experiments.Comment: 24 pages, including 26 figure

    Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy

    Get PDF
    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies

    Spike firing and IPSPs in layer V pyramidal neurons during beta oscillations in rat primary motor cortex (M1) in vitro

    Get PDF
    Beta frequency oscillations (10-35 Hz) in motor regions of cerebral cortex play an important role in stabilising and suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson's Disease. We have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the primary motor cortex (M1), to explore the cellular basis of the persistent beta frequency (27-30 Hz) oscillations manifest in local field potentials (LFP) in layers II and V of M1 produced by continuous perfusion of kainic acid (100 nM) and carbachol (5 µM). Spontaneous depolarizing GABA-ergic IPSPs in layer V cells, intracellularly dialyzed with KCl and IEM1460 (to block glutamatergic EPSCs), were recorded at -80 mV. IPSPs showed a highly significant (P< 0.01) beta frequency component, which was highly significantly coherent with both the Layer II and V LFP oscillation (which were in antiphase to each other). Both IPSPs and the LFP beta oscillations were abolished by the GABAA antagonist bicuculline. Layer V cells at rest fired spontaneous action potentials at sub-beta frequencies (mean of 7.1+1.2 Hz; n = 27) which were phase-locked to the layer V LFP beta oscillation, preceding the peak of the LFP beta oscillation by some 20 ms. We propose that M1 beta oscillations, in common with other oscillations in other brain regions, can arise from synchronous hyperpolarization of pyramidal cells driven by synaptic inputs from a GABA-ergic interneuronal network (or networks) entrained by recurrent excitation derived from pyramidal cells. This mechanism plays an important role in both the physiology and pathophysiology of control of voluntary movement generation

    Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides

    Get PDF
    In this study, we examine microbial communities of early developmental stages of the coral Porites astreoides by sequence analysis of cloned 16S rRNA genes, terminal restriction fragment length polymorphism (TRFLP), and fluorescence in situ hybridization (FISH) imaging. Bacteria are associated with the ectoderm layer in newly released planula larvae, in 4-day-old planulae, and on the newly forming mesenteries surrounding developing septa in juvenile polyps after settlement. Roseobacter clade-associated (RCA) bacteria and Marinobacter sp. are consistently detected in specimens of P. astreoides spanning three early developmental stages, two locations in the Caribbean and 3 years of collection. Multi-response permutation procedures analysis on the TRFLP results do not support significant variation in the bacterial communities associated with P. astreoides larvae across collection location, collection year or developmental stage. The results are the first evidence of vertical transmission (from parent to offspring) of bacteria in corals. The results also show that at least two groups of bacterial taxa, the RCA bacteria and Marinobacter, are consistently associated with juvenile P. astreoides against a complex background of microbial associations, indicating that some components of the microbial community are long-term associates of the corals and may impact host health and survival

    Restoring brain function after stroke - bridging the gap between animals and humans

    Get PDF
    Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke

    Pulmonary Function and Blood DNA Methylation: A Multiancestry Epigenome-Wide Association Meta-Analysis

    Get PDF
    Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, \u3c0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis

    Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex

    Get PDF
    The loss of dopamine (DA) in Parkinson’s is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1

    Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.

    Get PDF
    Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 Ă— 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity
    • …
    corecore