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Abstract 

Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often 

incomplete, which leaves many people dependent on others for their care. The improvement of long-

term outcomes should, therefore, be a clinical and research priority. As a result of the advances in 

our understanding of the biological mechanisms involved in recovery and repair after stroke, 

therapeutic opportunities to promote recovery through manipulation of post-stroke plasticity have 

never been greater. This work has almost exclusively been carried out in preclinical animal models 

of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic 

understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable 

us to reconcile behavioural accounts of recovery with molecular and cellular ones. Consequently, 

clinical trials can be designed in a stratified manner that takes into account when an intervention 

should be delivered and who is most liable to benefit. This approach is expected to lead to a 

substantial change in how restorative therapeutic strategies are delivered in patients after stroke.  

 

Key points 

 Stroke is the leading cause of complex adult disability in the world, but currently we do not provide 

enough of the right physical or behavioural interventions to drive recovery 

 Clear lesion-induced changes occur in brain structure and function early after stroke, which result 

in an environment with unique heightened plasticity that can support restoration of function, 

termed spontaneous biological recovery 

 Intense, high-dose behavioural training aimed at the reduction of impairment and the restoration 

of function should be (but currently is not) delivered in this critical time window 

 The basis of spontaneous biological recovery in humans is unclear, which yields uncertainty over 

how and when to augment or prolong this process with novel therapies — further characterization 

is required to enable realistic phase III trials 
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 Human neuroimaging techniques combined with modelling approaches can provide the 

appropriate biomarkers with which to map out a mechanistic approach to understand who and 

when to treat 

 The use of structural imaging to quantify damage in a range of brain regions can help predict 

long-term outcomes and provide the basis for stratification in restorative trials 
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Almost 17 million people worldwide experience a first-time stroke each year1, which is equivalent to 

one new stroke every 2 seconds. Stroke mortality is declining2 but in the UK over 1 million people 

live with the consequences of stroke, of whom over one-third are dependent on others for their care. 

The epidemiological shift of stroke disease burden towards long-term conditions means that these 

numbers will continue to rise3 Often, the decline in functional abilities that takes place in many 

patients 4 goes unrecognized, and so, unsurprisingly, the overall economic burden of stroke is high 

(estimated at over UK£9 billion a year in the UK). The fact that stroke is both a chronic and a 

progressive condition should influence research priorities in this area, but funding for research into 

stroke, and stroke recovery in particular, lags far behind cancer, coronary heart disease and 

dementia5. Improvement of recovery and long-term outcomes is an urgent clinical and scientific goal, 

but success is slow to materialize.  

How are the most dramatic clinical improvements expected to be achieved? Care in the hyperacute 

and acute period after stroke has improved dramatically over the past two decades, but our attention 

must now turn to treatments that actively promote recovery. One reason for optimism is that work in 

animal models points to a time-limited period of heightened plasticity after focal brain injury. 

However, achieving the best possible outcomes in patients after stroke requires two key challenges 

to be addressed. The first is how to take advantage of this critical period through the optimal timing, 

intensity, amount and even type of behavioural training that makes up neurorehabilitation. This 

question has been discussed elsewhere but, in brief, studies support the use of intense training that 

focuses on reducing impairment in the first few weeks and months post-stroke  to take advantage of 

biological repair mechanisms  6. The second challenge, and the focus of this Review, is how to 

augment the biological mechanisms of post-stroke plasticity to enhance or prolong the effects of 

behavioural training in patients after a stroke. The translational nature of this question is important, 

because although work in preclinical animal models has been pivotal in highlighting the biological 

basis of recovery, as yet virtually no benefit has been observed for humans. I will discuss the reasons 

why this lack of benefit might be and the prospects for developing a mechanistic understanding of 

post-stroke plasticity in humans. In particular, exciting prospects exist for the development of human 

biomarkers that provide an appropriate intermediate level of mechanistic description with which to 



Restoring brain function after stroke                                             Nick S Ward 

5 
 

bridge the current explanatory gap between what we know about recovery from pre-clinical studies 

and human studies.  

Recovery after stroke is proportional 

A starting point for determining the biological basis of recovery in patients after a stroke is to ask 

why some patients fail to recover. Stroke is one of the most common causes of physical disability 

worldwide and ~80% of stroke survivors experience impairment of movement on one side of the 

body7. Hand and arm impairment in particular is often persistent, disabling8 and a major contributor 

to reduced quality of life. In one study, only 38% of patients who presented with an initially paralysed 

upper limb regained some dexterity by 6 months9, and by 4 years two-thirds of patients perceived 

that loss of arm function was still a major problem10. These studies and many others clearly 

demonstrate that recovery is variable and difficult to predict. Factors associated with poor outcomes 

include right hemisphere damage, somatosensory deficit, visual inattention, homonymous 

hemianopia and urinary incontinence9,11. However, the dominant factor for predicting long-term 

upper limb outcome is initial severity of motor impairment. Additional factors that have independent 

predictive power over and above their association with this initial severity have not been identified. 

The ability of initial severity to predict upper limb recovery was first quantified as the proportional 

recovery rule [G] 12. When applied to real clinical data, two key findings exist (FIG. 1) that provide 

challenges but also opportunities for the field. The first is that initial upper limb impairment predicts 

later upper limb outcome extremely accurately in patients presenting with mild to moderate 

impairment. This result is disconcerting to those involved in post-stroke neurorehabilitation because 

it implies that any variability in the dose of rehabilitation delivered in the first 3 months exerts no 

substantial effect on a patient's level of motor impairment. The second key result is that proportional 

recovery fails in about half of patients presenting with severe impairment. In other words, in patients 

presenting with the same high level of initial severity, about half recover proportionately and half fail 

to make any substantial recovery (FIG. 1). Importantly, this finding tells us that the causes of initial 

impairment are probably independent from the biological factors that are important for the 

subsequent recovery process. This interpretation provides an opportunity, because factors important 
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for recovery might represent targets for novel therapeutics that aim to optimize the biological factors 

that maximize the effects of behavioural training. 

The proportional recovery rule has been confirmed in the motor domain several times12–15 and 

suggests two clear clinical questions. Firstly, how can we help patients with stroke to regain more 

than 70% of lost function and secondly, how can we turn poor recoverers into proportional 

recoverers? The answers to these questions will dramatically change our approaches to promoting 

recovery after stroke. Evidence for proportional recovery has also been shown for non-motor 

domains such as language16 and neglect17, and so this striking clinical phenomenon provides a novel 

and important model for investigating both potentially modifiable biological factors that are necessary 

for maximising recovery of function after stroke in humans, as well as currently non-modifiable 

factors that will help to make accurate predictions of long-term outcome. 

 

Spontaneous biological recovery 

Why do some patients experience poor recovery after stroke and yet others who are clinically 

indistinguishable have good recovery? The differences in these two groups manifest in the first few 

days and weeks after stroke. During this time there might (or might not) be a rapid generalized 

improvement in impairment that is in contrast to the modest gains that are made in the chronic 

phase18. Decades of work in animal models clearly show that a window of opportunity exists after 

focal brain damage within which behavioural training will have a much greater effect than outside 

the window. This early post-stroke phase has been described as a period of spontaneous 

biological recovery [G]. Early evidence of this critical period for recovery-related training was 

provided by Biernaskie and colleagues19 who found that rats that commenced motor training of the 

affected forelimb starting at 30 days post-stroke exhibited little improvement when compared with 

those whose treatment commenced earlier at 5–14 days post-stroke The causal role of the lesion 

itself in initiating spontaneous biological recovery was illustrated further by Zeiler and colleagues20 

who showed that intensive reach training of a mouse commenced 7 days after stroke was not able 

to promote full recovery. However, when the same animal was given a second stroke and training 

was commenced 2 days later (presumably within the critical period), then recovery was substantially 
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enhanced, and resulted in performance levels that approached those seen before either stroke. 

Clearly, focal brain damage sets in motion a series of biological events that, when combined with 

appropriate type and intensity of behavioural training6, can support dramatic recovery.  

 

Structural plasticity after stroke 

A substantial amount of work has been undertaken in animal models to define the molecular and 

cellular processes that underlie the formation of new local and large-scale brain circuits that support 

recovery from stroke. These studies are well described elsewhere21–25. Briefly, the basic elements of 

neural repair that can be seen in animal models of stroke include axonal sprouting, dendritic 

branching, synaptogenesis, neurogenesis and gliogenesis, and all can be enhanced in the early 

post-stroke period. Regeneration seems to occur in brain regions connected to the damaged area, 

including peri-infarct, ipsilesional and contralesional brain and spinal cord networks. Not all sprouting 

is clinically beneficial, and only axonal sprouting that links functionally related brain areas is 

consistently associated with improved post-stroke outcomes26. Definitive evidence of these 

restorative processes in humans is scarce, but markers suggestive of neurogenesis27, gliogenesis28 

and axonal sprouting27 have been found in human post-stroke perilesional brain tissue. 

Consequently, the occurrence of similar biological responses to brain injury in both animals and 

humans seems probable. 

The precise temporal and spatial ordering of these post-stroke biological events is governed by 

alterations in gene expression. Researchers have often remarked that the biological environment of 

the post-stroke brain resemble that of the developing brain, and that 'recovery recapitulates 

ontogeny'23.  However, a clear distinction between regenerative and developmental transcriptomes 

has been shown, which indicates a unique regenerative molecular program at work29. Furthermore, 

expression of the regenerative transcriptome is strongly influenced by age at stroke onset, with 

earlier induction of growth-inhibiting molecules and later expression of growth-promoting molecules 

exhibited by older animals than by younger animals30.  
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Preclinical work has attempted to both promote neuronal regeneration and, most commonly, to block 

extracellular inhibitory signals that counteract regeneration, with some successes (BOX 1)24,31. 

Changes to the structure of brain networks will not independently restore function, and all of these 

studies stress the need for appropriate levels of behavioural training, something that is often omitted 

from preclinical studies in animal models. The potential to form new functionally relevant circuitry 

that can be shaped by behavioural training provides a compelling mechanistic framework for 

functional recovery after stroke. However, the timing of administration of growth-promoting 

compounds, both in relation to the initial stroke damage and to the behavioural training itself, will 

clearly have a major effect on the therapeutic capacity. Whether training is delivered at the same 

time as growth-promoting molecules or sequentially could influence the type of sprouting that occurs 

and, consequently, whether behaviour is helped or hindered32. In addition, the effect that post-stroke 

behaviour can have on regenerative processes themselves is important to understand. For example, 

early compensatory use of the contralesional forelimb impairs recovery of the affected limb33, 

possibly through aberrant synaptogenesis in the perilesional cortex34. Any behaviour, if overtrained, 

will take advantage of the increased post-stroke potential for experience-dependent plasticity, and 

so abnormal or compensatory patterns of behaviour can become learned. Once again, this finding 

highlights the need for an appropriate form of behavioural training that can take advantage of any 

spontaneous or therapeutically enhanced potential for plasticity. 

As well as asking ‘when’ treatment should be administered, ‘where’ is probably an equally important 

question. Most of the compounds discussed have been administered via intravenous or intrathecal 

routes, but accurate spatial and temporal delivery might both be necessary to achieve the desired 

outcomes. Advances made in the last few years in tissue engineering35,36 and optogenetics37 provide 

potential methods for precisely delivering regenerative molecules to functionally relevant brain 

regions. 

 

Functional plasticity after stroke 

Identification of the trigger for post-stroke regenerative processes could provide further therapeutic 

opportunities. In addition to the structural changes described above, focal brain damage results in 
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alterations in neuronal excitability38. Immediately after stroke, signalling by the excitatory 

neurotransmitter glutamate is excitotoxic and contributes to cell death, whereas signalling by the 

inhibitory neurotransmitter GABA can counteract this toxicity through cell hyperpolarization39. This 

period lasts about 3 days post-stroke in the mouse40 and for an uncertain time in humans, after which 

the beneficial and detrimental effects of GABA and glutamate signalling seem to reverse. 

Specifically, changes to the cortical excitatory–inhibitory balance have long been known to influence 

the potential for experience-dependent plasticity in cortex and can reopen critical periods of plasticity 

in the adult brain41. Reduced inhibitory tone can lead to facilitation of downstream changes in 

neuronal structure42 and one possibility is that the altered levels of neuronal activity that result from 

a change in excitability regulate neurogenesis and the activity of growth factors (such as brain 

derived neurotrophic factor; BDNF) through epigenetic mechanisms43. Reduced cortical inhibitory 

mechanisms can lead to expanded and less specific receptive fields44,45, enhanced long-term 

potentiation46 and remapping of sensorimotor functions to surviving cortex47 in both hemispheres48, 

all of which is potentially useful when functional reorganisation of residual post-stroke brain 

structures is important for recovery of normal function. An altered balance between inhibitory 

GABAergic and excitatory glutamatergic signalling in surviving stroke regions and networks could, 

therefore, be a key event that sets other restorative mechanisms in motion. 

In 2009, Murphy and Corbett21 proposed that after the acute stroke period, attenuation of neuronal 

activity in brain regions connected to the damaged region might be reversed by a homeostatic 

increase in neuronal excitability, a process that can last at least several weeks21. Levels of neuronal 

excitability are determined by the balance in activity between GABA and glutamate, both of which 

are known to be altered after stroke38. For example, enhanced glutamate signalling through AMPA 

receptors, the major excitatory signalling system in the adult brain, is associated with improved 

recovery in stroke models49. This effect is probably due to downstream induction of BDNF49, which 

once again links altered neuronal excitability with downstream changes in axonal structure50. Much 

work on GABAergic signalling after stroke has focussed on the reduction in phasic (that is, synaptic) 

inhibition in the first few weeks after injury51 to increase the likelihood of long-term potentiation46. 

Specifically, GABAA receptors are dowregulated48,52, and the density of a number of inhibitory 
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interneurons is reduced after focal brain damage44,53. Both increased glutamatergic signalling and 

reduced phasic GABAergic signalling would be consistent with the idea of a homeostatic restitution 

of neuronal activity21. However, two studies have suggested that increased perilesional tonic 

inhibitory signalling via extrasynaptic GABAA receptors might be the dominant response to 

stroke40,54. When this tonic inhibition was reversed (using an α5 subunit that contained an 

extrasynaptic GABAA-receptor inverse agonist) motor outcomes improved in both mouse40 and rat51 

models of stroke. Although the increase in extracellular GABA in response to cerebral ischaemia is 

transient, the increase in tonic inhibitory signalling can persist for more than 1 month38 making this 

therapeutic window attractive compared with the window available for reperfusion strategies. 

The interactions between excitatory pyramidal cells and numerous inhibitory interneurons in the 

cortex is clearly complex and becomes more complex after stroke55. In addition, prolonged ischaemia 

affects different cell types unequally56 and causes alterations in the distribution of receptor 

subtypes57. The numbers of inhibitory interneurons (some of which inhibit other inhibitory 

interneurons) and pyramidal cells, as well as the ratios of receptor subtypes in the surviving cortex 

are not only unclear, but can differ between individuals. Nevertheless, the weight of evidence from 

animal studies to date suggests that spontaneous biological recovery is either augmented by a 

homeostatic restitution of cortical activity secondary to reduced phasic GABAergic inhibitory 

signalling, or blocked by excessive tonic GABAergic inhibitory signalling. Beyond the hyperacute 

period (up to 3 days post-stroke), what follows at a cellular level suggests that alterations in cortical 

inhibitory and excitatory mechanisms are important to determine the potential for plasticity and 

downstream structural changes that support recovery. Consequently, components of these inhibitory 

and excitatory mechanisms represent exciting and novel therapeutic targets for enhancing 

behavioural training after stroke. 

As with mechanisms of structural plasticity, the mechanisms responsible for the alterations in cortical 

excitatory–inhibitory balance that underlie changes in post-stroke functional plasticity are amenable 

to pharmacological and non-pharmcological manipulation. The most popular non-pharmacological 

approach is the use of non-invasive brain stimulation which appears to be able to enhance the effects 

of behavioural training to a small degree58,59. In a mouse model, direct current stimulation to the brain 
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appeared to augment synaptic plasticity through BDNF dependent mechanisms60. However, in 

human studies it is not clear how much or how accurately electrical current is delivered to target 

brain regions and consequently results are inconsistent and potential mechanisms poorly 

understood61,62. 

As described, tonic inhibition can be reversed by antagonists or inverse agonists of the α5-subunit-

containing extrasynaptic GABAA receptor, and compounds for use in humans are currently available 

and are under investigation in phase I studies. Zolpidem is an interesting pharmacological agent that 

binds with high affinity to α1-containing GABAA receptors through which it mediates sedative and 

hypnotic effects. However, zolpidem can also influence tonic inhibition through α5-containing GABAA 

receptors in a dose-dependent manner, such that low levels of the drug augment tonic inhibition and 

high levels reduce it63. Zolpidem can improve recovery in a mouse model of stroke64, and has been 

reported to mediate interesting effects such as the temporary reversal of deficits in language, 

cognitive and motor function in single patient cases with stroke 65,66. However, given the uncertainty 

over how zolpidem works, the mechanism of recovery in these individuals remains unclear. 

The idea that pharmacological approaches can help promote recovery of function after stroke has 

been well described67. Modulation of a number of neurotransmitter systems has shown positive 

effects in animal models of stroke, usually correlating with their effect on long-term potentiation67. A 

key message from this early work is that close temporal coupling of the drug and the behavioural 

training is required for maximum therapeutic effect, which suggests that the therapeutic mechanisms 

are short lived and reversible, rather than being due to chronic effects. This point has not always 

translated into study design, but should be considered when interpreting the results of a 

pharmacotherapy study. 

The current interest in selective serotonin reuptake inhibitors (SSRIs) comes from the fluoxetine for 

motor recovery after acute ischemic stroke (FLAME) study in which 20 mg fluoxetine daily, started 

5–10 days after ischaemic stroke and continued for 3 months, enhanced upper-limb motor 

recovery68. Many smaller studies of SSRIs have similar findings, but heterogeneity between studies 

is high69. Although SSRIs can influence structural plasticity, compelling evidence supports a 

plasticity-modifying effect mediated through the GABAergic system. Chronic doses of fluoxetine can 
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reinstate critical-period plasticity in adult rats through a reduction of extracellular levels of GABA and 

an increase in BDNF expression70. Furthermore, in a mouse model of stroke, Ng and colleagues71 

showed that fluoxetine treatment was able to prolong (but not reinstate) the critical period of post-

stroke plasticity through the reduction of inhibitory interneuron expression in intact cortex71. 

Serotonin can have inhibitory (via 5HT1A receptors) or facilitatory (via 5HT2A receptors) effects on 

pyramidal cells, but most fast-spiking inhibitory interneurons are inhibited by serotonin through 5HT1A 

receptors72. However, in the hippocampus, fluoxetine reduces fast-spiking inhibitory interneuron 

activity, which reduces gamma oscillations, independently of its action on monoamines73. In the 

cortex, chronic fluoxetine administration induces a reduction in layer II–III inhibitory interneuron 

activity which facilitates experience-driven structural dendritic remodelling74. A separate study in 

human primary motor cortex slices demonstrated that fluoxetine-induced reduction of inhibitory tone 

comes about through suppression of layer II–III monosynaptic excitatory connections from pyramidal 

cells to inhibitory interneurons, which leaves the monosynaptic output of GABAergic cells 

unaffected75. This layer-specific effect of fluoxetine is interesting in the context of work that 

demonstrates that early post-stroke ‘enriched rehabilitation’ is more effective than environmental 

enrichment or reach training alone as a result of the enhancement of use-dependent plasticity in 

peri-infarct layer II–III cortex76. One idea is that fluoxetine (and other pharmacotherapies) might 

influence training effects by replicating the biological effects of enriched environments.  

 

Translation: animals to humans and back  

How can this work be translated from animal studies into patients with stroke? Opportunities 

undoubtedly exist for understanding the biology that underlies regeneration and recovery after stroke 

further by addressing some of the shortcomings in preclinical models, such as development of 

biological connectome-style mapping of large-scale axonal, dendritic and synaptic changes, 

increased use of subcortical white-matter models of stroke and use of older. However, unidirectional 

translation from preclinical work has not led to dramatic improvements in human stroke recovery. 

Understanding the biological basis of recovery in humans by navigating the translational pipeline in 

a bidirectional and iterative79 is consequently an urgent priority, because opportunities to augment 
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or prolong spontaneous biological recovery would radically alter our understanding of how and when 

to best promote recovery after stroke. Establishing the nature and duration of a post-stroke critical 

period in humans is a crucial first step. The questions of whether hyperexcitability or hypoexcitability 

dominate in the post-stroke period, how long these changes last and whether all patients have the 

same response all remain to be determined (FIG. 2). Put simply, is the aim to prolong the critical 

period provided by spontaneous biological recovery or to reinstate it in the chronic phase of stroke, 

or both? We currently have an explanatory gap between preclinical and human accounts of post-

stroke recovery mechanisms, which is a barrier to translational work in the recovery. Clinical trials of 

plasticity-modifying interventions in patients after stroke are currently being implemented without 

biological targets, which makes treatment of the appropriate patients at the best time almost 

impossible. Rational therapies require mechanistic approaches, without which large-scale phase-III 

randomized-control trials of plasticity-modifying interventions are unlikely to succeed80.  

Animal studies of structural plasticity enhancement suggest that successful outcomes come about 

through new local and large-scale connectivity. In patients after a stroke, diffusion tensor imaging 

can be used to examine large white matter tracts 81,82 but cannot be used to examine axonal terminal 

fields where a number of important post-stroke changes take place. However, new anatomical 

connections should bring with them changes in post-stroke functional brain architecture. Functional 

brain imaging can detect differences in task-related activation patterns that alter in relation to time 

since stroke83,84 and degree of impairment85–87. In addition, connectivity patterns after stroke can be 

assessed either at rest88 or during an activity89 and these patterns might reflect the combination of 

new local and large-scale connectivity that is seen in animal models90. As yet however, human 

neuroimaging has not been used to convincingly demonstrate the efficacy of therapies that aim to 

promote structural plasticity. 

Alterations in cortical excitation and inhibition can influence outcome after stroke in animal models 

and consequently represent exciting and novel therapeutic targets. Studies in humans using 

transcranial magnetic stimulation91, magnetic resonance spectroscopy92 and PET 93 support the idea 

that GABAergic mechanisms are involved in stroke recovery without resolving the questions posed 

by work in pre-clinical models, including, as mentioned previously, the time scale of changes in 
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cortical excitability, whether hyperexcitability or hypoexcitability predominates (or whether they occur 

sequentially), and whether all patients have same response. Without answering these questions, 

designing an effective clinical trial to test any therapeutic intervention that claims to interact with 

these biological processes is difficult. For example, knowing when an α5-subunit-containing 

extrasynaptic GABAA-receptor agonist, fluoxetine, or even noninvasive brain stimulation should be 

used and who are the patients most liable to respond requires an appropriate biomarker [G] with 

which to reconcile animal and human accounts of post-stroke recovery94. To be truly useful, a 

biomarker will link observed behaviour to unseen biological phenomena in order to make meaningful 

mechanistic inferences about that behaviour95. In the example of patients with severe upper limb 

impairment very early after stroke, we have discussed how the observed behaviour (initial 

impairment) dissociates from the subsequent recovery pathway. Here, we would hope to be able to 

identify underlying biological phenomena that predict recovery, in a way that observed behaviour 

cannot, to ask whether failure of recovery is due to failure of the mechanisms underlying 

spontaneous biological recovery. 

A number of tools have been used in humans in an attempt to identify the appropriate biomarker, 

but most have considerable limitations. For example, transcranial magnetic stimulation is dependent 

on the presence of evoked potentials in affected muscles, and blood-oxygen-level dependent 

functional MRI relies on intact neurovascular coupling, limitations that effectively rule out the use of 

these tools in a large proportion of the patients that we need to study. Magnetic resonance 

spectroscopy can detect GABA, but it is likely that the majority of the signal is from intracellular, 

rather than synaptic or extrasynaptic, GABA. PET can assess GABAAergic activity 96,97 using 

flumazenil but this likely reflects cerebral hypoperfusion and neuronal density and integrity 98, rather 

than cortical excitability per se. Consequently, interest in the use of neuronal oscillations [G] as 

biomarkers of the potential for activity-dependent plasticity after stroke is growing 94,99,100. Neuronal 

oscillations can be measured noninvasively with magnetoencephalography (MEG) or 

electroencephalography, which detect the magnetic or electrical fields generated by neuronal activity 

of the brain101. Specifically, MEG measures the summation of postsynaptic fields from pyramidal 

cells102 with excitatory glutamatergic projections, which are reciprocally connected to interneurons 
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with inhibitory GABAergic projections. MEG signals are, therefore, dependent on the interaction 

between inhibition and excitation within cortical microcircuits103. For example, resting beta band (15–

30Hz) power is enhanced by GABAergic signalling103,104. Furthermore, typical movement-related 

beta desynchronisation is enhanced only by tonic inhibition105,106. These neuronal oscillations show 

high intraindividual reliability107 and could serve as appropriate longitudinal biomarkers of net 

inhibitory and excitatory mechanisms in human cortex after stroke and enable the differentiation 

between the contribution of phasic and tonic inhibition to the measured signal, thereby providing a 

window into the mechanisms of activity-dependent plasticity that are important for recovery. 

The utility of neuronal oscillations as biomarkers of plasticity mechanisms after stroke is further 

supported by a number of findings. Firstly, in patients after stroke, poor outcomes are associated 

with a persistent increase in low-frequency oscillations108, similar to those caused by 

benzodiazepines (a GABAA-agonist that causes phasic inhibition) and tiagabine (a GABA reuptake 

inhibitor that induces in tonic inhibition)104–106, which suggests that inhibitory mechanisms 

predominate in the perilesional cortex, and impair recovery. Secondly, low beta-rebound in response 

to tactile finger stimulation (which indicates increased early post-stroke sensorimotor excitability)109 

and increased sensory map size110 predict good recovery in patients with stroke, as in animal 

models21. Lastly, in a single patient with stroke, zolpidem reversed the increases in perilesional theta 

(4–10Hz) and beta oscillations and led to clinical improvement66. Zolpidem is pharmacologically 

interesting in that it has effects on both phasic and tonic GABAergic signalling that can change with 

dose. The key aspect in this result is that, however zolpidem was acting, the change in neuronal 

oscillations matched the clinical improvement, which highlights the potential of neuronal oscillations 

as biomarkers of cortical excitatory–inhibitory balance.  

A fundamental understanding of post-stroke recovery has been argued to require the development 

of computational models of the salient neural processes, including plasticity and learning systems of 

the brain111. This would allow models of underlying biological phenomena to be linked to appropriate 

behavioural processes. A particular advantage of MEG for this computational neurorehabilitation 

[G] approach is that the high temporal resolution of the spectral data lends itself to the use of 

biophysical models. Consequently, mechanistic inferences about post-stroke changes in oscillations 
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can be made at both intracortical (mesoscopic) and network (macroscopic) levels (FIG. 3). The 

model features are neurobiologically motivated112,113 so results offer a mechanistically meaningful 

interpretation at different scales of brain architecture. At the macroscopic level, stroke disrupts 

functional connections in the peri-infarct region and remotely connected regions, and so investigation 

of brain-wide network dynamics is important during post-stroke recovery114. Modelling of MEG data 

enables inferences at the cortical network level115 and the assessment of both inhibitory and 

(separately) excitatory effective coupling between cortical motor regions at the same frequency (that 

is, linear coupling; for example, beta to beta) and different frequencies (that is, non-linear coupling; 

for example beta to gamma). This assessment is useful as nonlinear coupling is important for 

functional integration across the brain and could reflect altered structural connectivity across 

networks that support recovery. Interestingly, inferences can also be made at the cortical 

microcircuit [G] level112. This novel mathematical modelling approach has been validated using 

local field potentials in animal models where independent pharmacological and microdialysis assays 

corroborated the modelling results113. For example, a novel biophysical model of human primary 

motor cortex 116 has been developed to reproduce key neurophysiological characteristics of mouse 

primary motor cortex 117. Here, model parameters represent either the strength of connections 

between pyramidal cells and inhibitory interneurons, or the overall excitability in each population of 

cells118. Ultimately the combination of both scales within a single generative model framework will 

be possible, to construct a comprehensive model of post-stroke functional architecture. These 

models can also be applied to local field potential data113, providing a way to directly compare, and 

so validate, recovery mechanisms in future studies in animal models and humans to develop a 

mechanistic understanding of recovery in humans. 

 

Rehabilitation 

The rationale for understanding how to optimize the post-stroke brain environment is to maximize 

the effect of behavioural training — which can take the form of physical, cognitive or speech therapy. 

The presence of a critical period of plasticity advocates for the delivery of high dose and high intensity 

behavioural training during this window of opportunity to maximize recovery of function by minimising 
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impairment18. For the upper limb, trials of intensive training that commence before the first 3 months 

after stroke still provide only modest amounts of therapy and the effect sizes range from minimal to 

modest119–121. One small study started 2-4 weeks after stroke did find that an extra 90 hours of upper 

limb training (3 hours per day for 6 weeks) increased the upper-limb Fugl–Meyer score (a reasonable 

assessment of motor impairment) by a clinically meaningful extra 12 points compared with those 

receiving an extra 30 hours122. Trials in patients with chronic stroke (in whom over 6 months had 

elapsed since stroke) have generally delivered up to 30 hours of additional therapy, usually at an 

hour per day, but have not had dramatic effects on impairment123–125. However, one study delivered 

300 hours of various upper-limb therapies over 12 weeks to chronic stroke and achieved 

comparatively large reductions in impairment of 11 points on the Fugl–Meyer scale126. Similar 

changes have been reported in a single-centre service delivering 90 hours of high-dose upper-limb 

therapy over 3 weeks127. In aphasia, the number of hours of therapy also clearly has an effect, with 

positive studies delivering a mean of 98.4 hours treatment, and negative studies a mean of 43.6 

hours128. Whether equivalent doses of therapy have an increased effect on impairment if delivered 

in the early compared with the late post-stroke phase is not yet clear. 

Much has been written about what form of behavioural training should be used, how it should be 

scheduled and what method of delivery is optimal6. However, as illustrated by the proportional 

recovery rule, these deliberations are not currently effecting outcomes at the level of impairment — 

at least, not in the motor domain129. The currently used dose and intensity of rehabilitation is probably 

too low130,131, and an increase in both dose and intensity using an appropriate training approach after 

stroke could lead to the large effect sizes that patients and clinicians want to see. Parallels can be 

drawn with data from animal studies that demonstrate a threshold of reaching activity, below which 

little effect on post-stroke outcomes is observed 132. The amount of therapy (particularly the amount 

of time on task) has been shown to have a positive influence on outcomes133, but these findings are 

not currently influencing clinical practice. 

A key question is whether the lack of a dramatic effect is due to biological factors — in which case, 

have we already reached the limit of achievable improvements? Alternatively, are we simply not 

providing enough treatment (at least, not of the correct type or at the right time) or not using the most 
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advantageous combinations of treatment? The use of aspirational approaches to investigate what is 

possible rather than what is pragmatic is vitally important. Current studies tend only to investigate 

interventions that could be delivered in current health care systems. Only knowledge of the true limits 

of recovery after stroke, in both the early and chronic phase, will enable the design an appropriate 

clinical service to achieve maximal recovery in an efficient and cost-effective way. Currently, the 

resources to deliver intensive early rehabilitation are scarce, and are virtually nonexistent for patients 

with chronic stroke. In the 1990s, the same was true of acute stroke services, but clinical trials of 

thrombolysis demonstrated improvements in outcome for stroke patients so compelling134 that the 

way acute stroke care was delivered had to be radically altered to accommodate this new knowledge. 

In effect, stroke recovery programs need a ‘thrombolysis moment’, which will only come about 

through aspirational rather than pragmatic approaches. 

 

Future predictions 

The ability to accurately predict long-term clinical outcomes in patients after stroke is important for a 

number of reasons. Firstly, outcome prediction is useful to plan treatments and to set goals in a 

rehabilitation program. Secondly, these predictions will enable clinical trials of restorative treatments 

to stratify patients in control and treatment groups based on expected outcome, without extremely 

large numbers of subjects will be required135. Thirdly, predictions of long-term outcomes in response 

to current treatment approaches could become the new benchmark with which to judge novel 

treatment approaches. In other words, the goal of any new intervention might be to deliver an 

outcome better than currently predicted, either at an individual or group level. 

Currently, the best predictor of long-term outcome — certainly in the motor domain — is initial 

severity. The limitations of initial severity as an outcome predictor  are reflected in the proportional 

recovery rule, which fails in about half of patients with stroke who present with initially severe 

impairment14. Resolution of the reasons behind the failure to recover in these patients (compared 

with other patients who have equally severe initial impairment) will not only improve predictive 

models of long-term outcome, but will reveal the factors important for the recovery process itself. As 

discussed in previous sections, measures to investigate the mechanisms of post-stroke plasticity in 
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patients after a stroke might be usefully incorporated into a predictive model for long-term outcome. 

Small scale approaches have shown how functional imaging data can readily be incorporated into 

these models136,137. 

Any attempt to predict long-term outcome must take into account damage to key brain regions. For 

example, optimal recovery of movement after stroke requires preservation of anatomical structures 

that convey sensory signals to the brain, and those that convey motor commands out of the brain, 

to enable behavioural interventions to drive remapping of sensorimotor functions in surviving brain 

areas and networks21. Indeed, in humans, more extensive corticospinal tract (CST) damage causes 

greater upper limb impairment138; although CST damage correlates with initial upper limb 

impairment, it can account for some proportion of upper limb outcome over and above that predicted 

by initial severity15,139. Most of this work has been carried out in patients with subcortical strokes and 

so the effect of damage to widespread cortical areas, especially those required for cognitive functions 

important for learning such as memory and sustained attention, has not been assessed. 

Quantification of damage within CST was shown to be poor at accounting for impairment in patients 

with infarcts involving both subcortical and cortical areas (FIG 4A&B)140. In fact, a combination of 

cortical motor areas and CST is the most accurate way to account for upper limb motor impairment 

in a wide range of patients with stroke who have infarcts that involve subcortical and/or cortical 

regions (FIG 4C&D)141. In the language domain, the Predicting Language Outcome and Recovery 

After Stroke (PLORAS) system142 demonstrates that using similar machine-learning approaches, the 

individual trajectory of language recovery can be predicted from structural brain scans.  

Whether adding information about residual functional architecture will provide independently useful 

predictive information remains to be seen. In the motor domain, most findings point to lower resting 

connectivity between primary motor cortices in patients with more motor impairment 143 and greater 

corticospinal tract damage 144. During movement of the affected hand the influence of contralesional 

to ipsilesional M1 is more inhibitory, but once again, only in more impaired patients 89. In one study 

that examined a number of demographic, genetic and brain imaging characteristics of chronic stroke 

patients undergoing 3 weeks of upper limb robotic training, lower CST damage, absence of cortical 
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damage and greater connectivity between primary motor cortices were factors indicating higher 

chance of clinical improvement145.  

The incorporation of information about brain structure and function together with readily available 

clinical information should provide the optimal approach to develop new models that predict long-

term outcome after stroke. The size of databases containing this information now needs to increase 

to maximize the precision with which predictions can be made, because predictive accuracy is liable 

to be important in determining patient and clinician uptake in utilising this information.  

 

Conclusions 

Great advances have been made in understanding the biological basis of restoration of neurological 

function after stroke. However, translation into human studies has been slow. Two key elements 

promote optimal restoration of function after stroke: effective behavioural training that targets 

impairment as well as function, and treatments that can augment and/or prolong plasticity in the 

post-stroke critical period of plasticity. Current implementation of new treatments to promote 

recovery (such as drugs and noninvasive brain stimulation) in phase III trials lacks a clear 

mechanistic rationale and is, therefore, premature80. To achieve progress, mechanistic studies to 

understand post-stroke mechanisms of plasticity must move into humans with stroke and future 

investigation in the translational pipeline must become bidirectional and iterative79,95. Effective 

behavioural therapies and appropriate biomarkers of post-stroke plasticity mechanisms are both 

desperately needed to help understand who and when to treat, and the methodologies to achieve 

these aims are now readily available. This information must lead to a step-change in how restorative 

treatments for stroke are delivered. Clinical trial design must take account of the biological 

mechanisms underlying stroke and should stratify different patient subpopulations, rather than using 

a ‘one size fits all’ approach. Attempts to treat impairment in chronic stroke have been disappointing 

and have not produced the dramatic effect sizes required to transform the field79. Targeting the 

mechanisms that underlie early spontaneous biological recovery in humans represents the most-

promising path to dramatically improve patients’ outcomes18 and should be prioritized. However, the 
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limits of what is possible in chronic stroke have not yet been explored, especially if the delivery of 

high doses of behavioural therapy in reopened critical periods of plasticity becomes possible.  
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Figure legends 

 

Figure 1 | Proportional motor recovery in the upper limb. a | Predicted change in upper-limb 

impairment plotted against observed change at 3 months post-stroke. Patients are predicted to 

regain approximately 70% of their initial deficit by 3 months after stroke. Patients in the blue area 

have proportional recovery as predicted. Patients in the red area recover less well than predicted. 

Patients in dotted black box all have initially severe levels of impairment, with roughly equal numbers 

of good (proportional) and poor recoverers. b | Illustration of different recovery curves of patients 

with initially severe upper limb impairment - who have recovery as predicted (blue) or poor recovery 

(red). This suggests that the factors important for recovery are different from those responsible for 

initial severity. 
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Figure 2 | Post-stroke plasticity and recovery. Evidence from animal models of stroke points to 

both (1) an upregulation of neuronal growth-promoting factors and an increase in neuronal 

excitability (blue area), both of which would create an environment that would encourage recovery 

of function, and (2) an upregulation of neuronal growth-inhibiting factors and an decrease in neuronal 

excitability (red area) both of which would create an environment that would limit recovery of function. 

Whether these processes occur after stroke in humans is unknown. Further work is required to 

determine which of these processes predominates, how long each one lasts, and whether the same 

processes occur in all patients to the same degree. This knowledge is crucial for determining the 

optimal timing for the introduction of both behavioural and plasticity-enhancing treatments. 
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Figure 3 | Characterization of anatomical damage. a | Brain maps derived from patients with 

chronic stroke caused by damage to subcortical brain regions (‘subcortical’) with or without extension 

to the cortex (‘cortical’). The colour scale represents the voxel-wise ‘impairment weighting’, i.e. the 

contribution that damage in a brain area is likely to make to motor impairment. Blue represents the 

areas where damage is highly likely to cause motor impairment: these areas extend into cortical 

regions for the ‘cortical’ patients. Analysis was performed using a multivoxel pattern analysis tool 

PRoNTo. b | The mean impairment weightings for four different regions of interest in patients with 

cortical or subcortical stroke damage. Whereas damage within corticospinal tract accounted for 

impairment in the subcortical group (red asterisk), damage in sensorimotor areas accounted for more 

impairment in the cortical group (blue asterisk)136. Damage in a whole brain mask of white matter 

and grey matter contributed to impairment in patients with cortical but not subcortical stroke damage. 

c | A brain map of cortical and subcortical brain regions important for sensorimotor function (colours 

represent different anatomical regions from the automated anatomical labelling atlas), together with 

a corticospinal tract map78. d | A machine-learning regression approach showed that damage to 
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voxels contained in the map in part c accounted for 68% of motor impairment in 50 patients with 

chronic stroke, as illustrated in the graph of predicted motor impairment plotted against real motor 

impairment in these patients. The same analysis using only the corticospinal tract region of interest 

accounted for only 42% of the motor impairment, suggesting that knowledge of damage to a range 

of motor related brain structures, not just corticospinal tract, is important for predicting outcome137. 

Parts a and b modified with permission from BMJ Publishing group ltd. © Park, C.-H., Kou, N. & 

Ward, N. S. J. Neurol. Neurosurg. Psychiatry (2016). Parts c and d modified with permission from 

Elsevier © Rondina, J. et al. NeuroImage Clin. 12, 372–380 (2016). 
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Glossary 

Proportional recovery rule: The amount of function regained after stroke is a proportion of the 

initial deficit. For example, by 3 months patients will regain ~70% of the upper limb motor function 

that had been lost on day 3 post-stroke. 

Spontaneous biological recovery: Recovery occurring in the first few weeks and months after 

stroke, attributable to enhanced post-stroke plasticity mechanisms. Recovery is rapid, occurs at the 

level of impairment and generalizes beyond the tasks that are used in post-stroke training, compared 

with improvements seen in the chronic phase of stroke. 

Biomarkers: Indicators of disease state that can be used clinically as a measure reflecting 

underlying molecular or cellular processes that might be difficult to measure directly in humans, and 

can be used to predict recovery or treatment response95. 

Neuronal oscillations: Rhythmic fluctuations in activity generated either spontaneously or in 

response to stimuli by neural tissue in the CNS. Entrained oscillations in multiple neurons and neural 

networks are thought to form a critical interface between cellular activity and large-scale functions in 

the CNS. 

Computational neurorehabilitation: a newly emerging field aimed at mathematical modelling of 

plasticity and learning to understand and improve recovery of individuals with neurologic impairment. 

Cortical microcircuit: The pattern of connections between specific excitatory and inhibitory neurons 

in the cortex. 

Hemispatial neglect: Reduced awareness of stimuli on one side of space, even though sensory 

loss might be absent. 
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Box 1 | Factors that block inhibition of neuronal regeneration  

Myelin-associated proteins  

Myelin-associated proteins such as Reticulon4 (also known as NogoA), myelin-associated 

glycoprotein (MAG), and myelin-associated oligodendrocyte basic protein have been shown to block 

neuronal regeneration. An anti-NogoA antibody has been used in preclinical models both of stroke 

and of spinal cord injury, and leads to improved recovery profiles. Sprouting is often seen across the 

midline, either at the level of brain stem or spinal cord. Lindau and colleagues146 found that rats 

treated with anti-NogoA antibody recovered motor control after sensorimotor cortex ablation because 

intact corticospinal tract had extensively sprouted across the midline into the denervated spinal 

hemicord, which led to a somatotopic anatomical and functional side switch in the projection of adult 

corticospinal neurons. The safety of anti-NogoA antibodies has been tested in patients with spinal 

cord injury24 and amyotrophic lateral sclerosis147 and anti-MAG has been tested in patients with 

stroke 148. 

Extracellular matrix proteins  

Chondroitin sulphate proteoglycans mediate the inhibitory properties of perineuronal nets and are 

known to block axon growth. Cortical infarcts lead to reduced density of PNNs in peri-infarct cortex, 

maximal at 30 days post-lesion44. The enzyme chondroitinase ABC can reinstate critical period 

plasticity via the inactivation of chondroitin sulphate proteoglycans and therefore PNNs149. In a rat 

model of stroke, chondroitinase ABC helped restore motor function after both acute and delayed 

administration150. However, extracellular matrix proteins are not always inhibitory, for example, the 

prevention of astrocytic scar formation can reduce stimulated axon regrowth. e.g. preventing 

astrocytic scar formation can reduce stimulated axon regrowth151. 

Growth cone inhibitors  

Neuronal regeneration can also be inhibited by molecules that inhibit the axonal growth cone, such 

as semaphorins and ephrins. Ephrin-A5 is induced in astrocytes in peri-infarct cortex, which leads to 

inhibition of axonal sprouting. When ephrin-A5 signalling is blocked, then motor training is more liable 

to promote recovery152. In this case, sprouting leads to a new pattern of reparative axonal projections 

in motor-related cortices of the ipsilesional hemisphere.  
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Box 2 | Factors that promote neuronal regeneration 

Inosine 

The naturally occurring purine nucleoside inosine has been reported to enhance axon growth and 

improve outcomes in a preclinical model of stroke. Inosine promotes axonal collateral sprouting into 

areas that have lost their normal innervation, such as the corticospinal tract after stroke153 or 

hippocampus after experimental traumatic brain injury154. Furthermore, inosine can augment the 

effects of anti-NogoA antibody (BOX 1) to restore skilled forelimb use after stroke155.  

Growth and differentiating factor 10 (GDF10) 

The gene encoding GDF10 is highly upregulated in the axonal regenerative transcriptome induced 

in peri-infarct neurons and promotes functionally useful axonal sprouting156.  

Stem cells 

Increasingly, interest has been shown in the use of stem cell therapy to promote recovery after 

stroke157. The two main lines of stem cell therapies are endogenous (promoting the production of 

existing neural stem cells) or exogenous (transplanted from another source)158. Over the past few 

years, research has explored how to reprogram adult human somatic cells to induced pluripotent 

stem cells thereby producing patient-specific cells for autologous transplantation159. Rather than 

restoring lost tissue, stem cells could act as stimulants for trophic factors and modulators of 

immunological and inflammatory changes after stroke. Trials of exogenous cells in humans have 

proved safe and claims have been made for improved clinical outcomes in patients with chronic 

stroke160,161. 

 

Box 3 | Pharmacotherapy for stroke recovery: an historical perspective 

The idea of pharmacotherapy for stroke recovery is not recent. Early work in this field was performed 

in 1963 by Alexander Luria and colleagues in soldiers with head injuries77. In addition to cell death, 

Luria et al. proposed that symptoms could be induced by functional inhibition of intact neurons and 

that “removal of the diaschisis, restoration of synaptic conduction or to use another term, 

‘deblocking’” might be helpful78. The investigators proposed that this task could be achieved by the 

combination of two approaches. First, the administration of a pharmacological agent (generally 
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anticholinesterases) “capable of removing inhibition, modifying mediator metabolism and restoring 

disturbed synaptic conduction”78, and second by methods of training which promote ‘de-blocking’, 

the essence of which is “that by means of various methods the level of excitability in certain functional 

systems is raised and the corresponding functions are ‘de-inhibited’”78. The general concepts have 

a familiar ring compared to current concepts, but although the underlying mechanisms might now be 

more apparent than in the past, the clinical outcomes have not advanced a great deal. 

 

 

 


