275 research outputs found

    Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans

    Get PDF
    The silicate rock weathering followed by the formation of carbonate rocks in the ocean, transfers CO2 from the atmosphere to the lithosphere. This CO2 uptake plays a major role in the regulation of atmospheric CO2 concentrations at the geologic timescale and is mainly controlled by the chemical properties of rocks. This leads us to develop the first world lithological map with a grid resolution of 1 1. This paper analyzes the spatial distribution of the six main rock types by latitude, continents, and ocean drainage basins and for 49 large river basins. Coupling our digital map with the GEM-CO2 model, we have also calculated the amount of atmospheric/soil CO2 consumed by rock weathering and alkalinity river transport to the ocean. Among all silicate rocks, shales and basalts appear to have a significant influence on the amount of CO2 uptake by chemical weatherin

    Enhanced chemical weathering of rocks during the last glacial maximum: a sink for atmospheric CO2?

    Get PDF
    It has been proposed that increased rates of chemical weathering and the related drawdown of atmospheric CO2 on the continents may have at least partly contributed to the low CO2 concentrations during the last glacial maximum LGM.. Variations in continental erosion could thus be one of the driving forces for the glacialrinterglacial climate cycles during Quaternary times. To test such an hypothesis, a global carbon erosion model has been applied to a LGM scenario in order to determine the amount of CO2 consumed by chemical rock weathering during that time. In this model, both the part of atmospheric CO2 coming from silicate weathering and the part coming from carbonate weathering are distinguished. The climatic conditions during LGM were reconstructed on the basis of the output files from a computer simulation with a general circulation model. Only the predicted changes in precipitation and temperature have been used, whereas the changes in continental runoff were determined with an empirical method. It is found that during the LGM, the overall atmospheric CO2 consumption may have been greater than today by about 20%., mainly because of greater carbonate outcrop area related to the lower sea level on the shelves. This does not, however, affect the atmospheric CO2 consumption by silicate weathering, which alone has the potential to alter atmospheric CO2 on the long-term. Silicate weathering and the concomitant atmospheric CO2 consumption decreased together with a global decrease of continental runoff compared to present-day both by about 10%.. Nevertheless, some uncertainty remains because the individual lithologies of the continental shelves as well as their behavior with respect to chemical weathering are probably not well enough known. The values we present refer to the ice-free continental area only, but we tested also whether chemical weathering under the huge ice sheets could have been important for the global budget. Although glacial runoff was considerably increased during LGM, weathering under the ice sheets seems to be of minor importance

    Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): An approach based on 133Cs normalization and lead isotope measurements

    Get PDF
    This paper presents an attempt to reach natural background levels of heavy metals in surficial sediments of the Gulf of Lions(NW Mediterranean). To correct for the grain-size effect, normalization procedures based on a clay mineral indicator element are commonly used, after a first grain size separation by sieving. In our study, we tested the applicability of this method with respect to commonly used normalizer elements, and found that stable Cs shows the best ability to reflect the fine sediment fraction. Background levels were successfully reached for Co, Cr, Cu, Ni and Pb, compared to various literature references. Nevertheless, in the case of lead, the normalized data depicted a general enrichment in all samples, and the natural levels could only be reached when concentrations were corrected for the atmospheric contribution by analysing lead isotope ratios. Also for Zn, a general enrichment was found in our samples, although less important

    Intellektuellen-Status und intellektuelle Kontroversen im Kontext der Wiedervereinigung

    Get PDF
    Nicht nur die beiden Gesellschaften, sondern auch die Intellektuellen aus Ost- und Westdeutschland befinden sich nach der Wiedervereinigung in einem Prozeß des Umbruchs und der Umgruppierung. Vor diesem Hintergrund beleuchten die beiden Beiträge von Wolfgang Emmerich und Lothar Probst in Heft 4 der Reihe "Materialien und Ergebnisse aus Forschungsprojekten des Institutes" Statusveränderungen und Kontroversen intellektueller Formationen in Deutschland. Beide Beiträge berühren sich in ihrer Darstellung des Antifaschismus in der DDR als identitätsstiftender "Zivilreligion" (Helmut Dubiel) und Loyalitätsfalle. Wolfgang Emmerich zeichnet am Beispiel bekannter DDR-Schriftsteller nach, wie der Antifaschismus als ideologische Klammer bei zwei Autoren-generationen gewirkt hat, während Lothar Probst den sowohl bei Ost- als auch bei Westintellektuellen anzutreffenden Mythos vom "antifaschistischen Charakter" der DDR problematisiert.Not only the two societies but also both the East and West German intellectuals have been, after the reunification, in a process of radical change and regrouping. Against this background, the two articles by Wolfgang Emmerich and Lothar Probst in number 4 of the series "Materialien und Ergebnisse aus Forschungsprojekten des Institutes" illuminate changes of status and controversies of intellectual formations in Germany. The two articles coincide in the way they present antifascism in East Germany as an identity-creating "Zivilreligion" (Helmut Dubiel) and a loyalty trap. Taking well-known East German authors as examples, Wolfgang Emmerich describes how antifascism worked as an ideological grip on two generations of authors, while Lothar Probst raises the issue of the myth, to be found in the writings of Eastern as well as Western intellectuals, of East Germany's "antifascist character"

    Atmospheric CO2 consumption by continental erosion : present-day controls and implications for the last glacial maximum

    Get PDF
    The export of carbon from land to sea by rivers represents a major link in the global carbon cycle. For all principal carbon forms, the main factors that control the present-day fluxes at the global scale have been determined in order to establish global budgets and to predict regional fluxes. Dissolved organic carbon fluxes are mainly related to drainage intensity, basin slope, and the amount of carbon stored in soils. Particulate organic carbon fluxes are calculated as a function of sediment yields and of drainage intensity. The consumption of atmospheric/soil CO2 by chemical rock weathering depends mainly on the rock type and on the drainage intensity. Our empirical models yield a total of 0.721 Gt of carbon (Gt C) that is exported from the continents to the oceans each year. From this figure, 0.096 Gt C come from carbonate mineral dissolution and the remaining 0.625 Gt C stem from the atmosphere (FCO2). Of this atmospheric carbon, 33% is discharged as dissolved organic carbon, 30% as particulate organic carbon, and 37% as bicarbonate ions. Predicted inorganic carbon fluxes were further compared with observed fluxes for a set of 35 major world rivers, and possible additional climatic effects on the consumption of atmospheric CO2 by rock weathering were investigated in these river basins. Finally, we discuss the implications of our results for the river carbon fluxes and the role of continental erosion in the global carbon cycle during the last glacial maximum

    Predicting the impact of land use on the major element and nutrient fluxes in coastal Mediterranean rivers: The case of the Teˆt River (Southern France)

    Get PDF
    This study presents a detailed discrimination between the natural and anthropogenic sources of dissolved major elements in the Teˆt River, a typical small coastal river in the south of France. The main objectives were to quantify the materials that were released by human activities in the basin, and to determine the specific element inputs for the major land use forms. The dissolved material fluxes were estimated by weekly monitoring over a hydrological year (2000–2001) along the major water gauging stations, and the flux relationships were examined in the context of anthropogenic and natural basin characteristics as determined by a Geographical Information System (GIS). Intensive agricultural land use in the form of fruit tree cultures and vineyards has a strong control on the dissolved element fluxes in the river. Area specific element releases for these cultures are greatest for SO4, with an estimated average of about 430 ± 18 keq km2 a1. This is P11 times the natural SO4 release by rock weathering. Also for K, NO3, PO4 and Mg, the specific releases were P6 times the natural weathering rates (respectively about 44, 60, 4 and 265 keq km2 a1). Waste-waters are the other major source of anthropogenic elements in the river. They have an important role for the fluxes of inorganic P and N, but they are also a considerable source of Cl and Na to the river. For example, the average annual release of Cl is around 150 moles/inhabitant in the rural basin parts. Further downstream, however, where population density strongly increases, industrial effluents can enhance this value (>300 moles/inhabitant). The waste-waters contribute more than 70% of the dissolved inorganic N export to the sea, although their contribution to the average DOC export is almost negligible (3%)

    Input of particulate heavy metals from rivers and associated sedimentary deposits on the Gulf of Lion continental shelf

    Get PDF
    Fluxes of the heavy metals chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd) and zinc (Zn) delivered by rivers to the Gulf of Lion (NW Mediterranean Sea) were estimated over a three year study of the River Rhone and its smaller tributaries. Most of the particulate metal fluxes (80e90%) delivered by these rivers occurred within a very short period of time (less than 12%), a typical trend for the Mediterranean environment, where highly contrasting hydrological regimes were observed over the year. Temporal and spatial variations in the fluxes of these particulate metals were driven by the fluxes in both water discharge and suspended particulate matter load. On the shelf, these particulate metal fluxes, largely arising from the Rhone watershed, were two to ten times more important than those resulting from atmospheric deposition. Co, Cr and Ni in the rivers and on the shelf surface sediments were mainly natural and associated with the finest particles. Cd and Phosphorus appeared to be associated with the silt fraction and to be enriched in the prodelta areas. Pb, Zn and Cu were more closely associated with the organic matter content and also showed enrichment in the organic rich prodeltaic sediments. Anthropogenic influences diminished offshore, except for Pb and Zn which could be supplied from the atmosphere by man-made aerosols. Although most of the metals tended to be enriched in the prodelta areas, these did not constitute a permanent sink due to resuspension processes affecting these shallow depths. A resuspension experiment conducted on sediment cores from the Rhone prodelta demonstrated that metal deposited on the surface layer, especially those associated with the organic matter, may be resuspended; this should be taken into account for a complete understanding of the biogeochemical cycle of these metals

    Sources and sinks of sediment-bound contaminants in the Gulf of Lions (NW Mediterranean Sea): A multi-tracer approach

    Get PDF
    Surficial sediments collected in 2002 throughout the Gulf of Lions continental shelf (NW Mediterranean) were analysed for trace metals (Cd, Co, Cr, Cs, Cu, Ni, Pb, Sr, Zn and Zr), major elements (Al, Ca, Fe, P and Ti) and the sewage marker coprostanol. In addition, particle size distribution, organic carbon (OC) and carbonates were also determined. Results showed that the metal contamination (Cd, P, Cu, Pb and Zn) is mainly introduced by the local rivers and accumulates—via a regulation by OC and silt fraction (2–63 mm)—in the direct vicinity of the mouths, in high shear stress environments. Here also the signal of sewage contamination is the best preserved, especially off the eastern point sources where local sedimentation rates save the faecal marker from biodegradation processes. It is demonstrated that the shallow prodeltas are the first repository areas for land-derived particles, exposing local ecosystems to both inorganic and organic contaminations. When going seaward, however, sediment dilution, particle sorting and biodegradation processes make that most riverborne contaminants rapidly reach natural levels. Only some metals (i.e. Pb and Zn)—closely associated with the clay fraction—still depict anthropogenic enrichment, which seems to be inherited from man-made aerosols
    corecore