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Abstract

The export of carbon from land to sea by rivers represents a major link in the global carbon cycle. For all principal

carbon forms, the main factors that control the present-day fluxes at the global scale have been determined in order to

establish global budgets and to predict regional fluxes. Dissolved organic carbon fluxes are mainly related to drainage

intensity, basin slope, and the amount of carbon stored in soils. Particulate organic carbon fluxes are calculated as a function

of sediment yields and of drainage intensity. The consumption of atmosphericrsoil CO by chemical rock weathering2

Ždepends mainly on the rock type and on the drainage intensity. Our empirical models yield a total of 0.721 Gt of carbon Gt
.C that is exported from the continents to the oceans each year. From this figure, 0.096 Gt C come from carbonate mineral

Ž .dissolution and the remaining 0.625 Gt C stem from the atmosphere F . Of this atmospheric carbon, 33% is dischargedCO2

as dissolved organic carbon, 30% as particulate organic carbon, and 37% as bicarbonate ions. Predicted inorganic carbon

fluxes were further compared with observed fluxes for a set of 35 major world rivers, and possible additional climatic effects

on the consumption of atmospheric CO by rock weathering were investigated in these river basins. Finally, we discuss the2

implications of our results for the river carbon fluxes and the role of continental erosion in the global carbon cycle during the

last glacial maximum.
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1. Introduction

Continental erosion represents a sink for atmo-

spheric carbon. Atmospheric CO is consumed both2

by organic matter formation and chemical rock
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weathering, and subsequently transferred as dis-
Ž .solved organic carbon DOC , particulate organic

Ž .carbon POC , and dissolved inorganic carbon to the

oceans by rivers. The latter occurs mainly in the
Ž y.form of bicarbonate ions HCO . Processes that3

withdraw this carbon from the ocean reservoir are

the organic matter and carbonate sedimentation, as

well as the respiration of organic matter in the water

column. Carbonate precipitation and organic matter

respiration liberate CO to the atmosphere, while the2

carbon that is incorporated in the sediments becomes

part of the lithosphere.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12041641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Previous studies estimated the present-day total of

atmospheric carbon that is consumed by continental
Ž .erosion F to be about 0.7 to 0.8 Gt per year:CO 2

0.26 to 0.30 Gt are discharged to the oceans as
y ŽHCO ions Berner et al., 1983; Meybeck, 1987;3

.Probst, 1992; Amiotte-Suchet, 1995 , 0.20 to 0.22 as
ŽDOC Meybeck, 1982; Spitzy and Leenheer, 1991;

.Meybeck, 1993 , and 0.18 to 0.23 Gt as POC
Ž .Meybeck, 1982; Ittekkot, 1988; Meybeck, 1993 .

These fluxes can account for about one third of the

estimated net oceanic carbon uptake for present-day
Ž .Sarmiento and Sundquist, 1992 . The role of conti-

nental erosion in the long-term or geochemical car-

bon cycle of the Earth has been discussed, for exam-
Ž .ple, by Garrels and Mackenzie 1971 , Walker et al.

Ž . Ž . Ž .1981 , Berner et al. 1983 , and Berner 1991 .

Concerning the erosion of organic carbon, the

CO consumption is governed by the photosynthesis2

reaction, that can be simplified as following:

CO qH O™CH OqO 1Ž .2 2 2 2

All carbon in the organic matter that is washed to the

rivers is of atmospheric origin. Also for riverine

HCOy ions resulting from weathering of silicate3

Žrocks, all carbon comes from the atmosphere mainly
.via soil CO , as it can be seen, for example, in the2

following equation for albite hydrolysis:

2NaAlSi O q2CO q11H O™Al Si O OHŽ . 43 8 2 2 2 2 5

q2HCOyq2Naqq4H SiO 2Ž .3 4 4

For HCOy ions resulting from weathering of car-3

bonate rocks, however, only half of the carbon origi-

nates from atmosphericrsoil CO , while the other2

half comes from the carbonate mineral. This can be

shown, for example, with the following equation for

the calcite dissolution:

CaCO qCO qH O™Ca2qq2HCOy 3Ž .3 2 2 3

For all of the carbon forms mentioned above, we

determined the major factors that control the fluxes

at the global scale. Our main purpose is to provide a

modelling tool in order to estimate river carbon

fluxes for present-day, which may also be applied for

different scenarios of climate change. In this paper,

we present detailed budgets for the present-day fluxes

and discuss then the implications of the controlling

factors for the situation during the last glacial maxi-
Ž .mum LGM in order to evaluate the role of conti-

nental erosion for changes in the glacialrinterglacial

carbon cycle.

2. Data and methods

River fluxes of carbon were taken from the litera-

ture, and the climatic, biologic, and geomorphologic

characteristics were extracted from various ecologi-

cal databases. We determined first the best possible

regression model to describe river carbon fluxes at

the global scale, and then extrapolated fluxes on the

basis of the determined relationships and the corre-

sponding datasets to the overall continental area. The

work is based on two previous studies on fluxes of
Žinorganic carbon Amiotte-Suchet, 1995; Amiotte-

.Suchet and Probst, 1995 , and on fluxes of organic
Ž .carbon Ludwig et al., 1996a . In this study, all

fluxes were recalculated with common datasets, and

new datasets for continental runoff and organic car-

bon storage in soils were used.

Global distribution of runoff was taken from the
ŽUNESCO Atlas of World Water Balance Korzoun

.et al., 1977 . Isohyets of the maps were digitized and

subsequently gridded to a 0.58=0.58 longituderlati-

tude resolution. This yields a global figure of about

41 800 km3 yry1 for the exoreic runoff from the
Žcontinents not considering the runoff from the re-

.gions under permanent ice cover . The corresponding

drainage area is about 106=106 km2. Mean organic

carbon content in the soils was extracted from a

global dataset developed at the Soil Conservation

Service of the United States Department of Agricul-
Ž .ture USDA-SCS . The dataset is, for example, de-

Ž .scribed by Eswaran et al. 1993 . Rock types were

taken from a global lithological map developed at
Ž .our CNRS Institute Amiotte-Suchet, 1995 . All other

datasets we used are the same as used by Ludwig et
Ž .al. 1996a .

3. Inorganic carbon fluxes

3.1. Relations with drainage and lithology

The flux of atmosphericrsoil CO consumed by2

Ž .rock weathering F is mainly a function ofCO -RW2

Ž .drainage intensity Q , and of the rock type that is



drained by the surface waters. This has been de-
Žscribed in detail elsewhere Amiotte-Suchet and

.Probst, 1993a,b, 1995 . Empirical relationships were
Ž .established using data published by Meybeck 1986

concerning runoff and HCOy concentrations of 2323

monolithologic watersheds in France. The water-

sheds were grouped into seven lithologic classes that

are representative for the major rock types outcrop-

ping on the continents, and linear models between

F and Q were determined for each of theCO -RW2

Ž . Ž .seven classes. According to Eqs. 2 and 3 , FCO -RW2

was considered to be equal to the HCOy fluxes in3

waters draining silicate rocks, and equal to half of

the HCOy fluxes in waters draining carbonate rocks.3

Together, these relationships form the Global Ero-

sion Model for atmospheric CO consumption by2

Žchemical weathering GEM-CO ; Amiotte-Suchet2

.and Probst, 1995 .

3.2. Relations with climate

The applicability of the GEM-CO relationships2

to the scale of large river basins was tested for the

Congo and the Amazon under tropical wet climate,

and for the Garonne in France under temperate wet

climate. Comparison of the GEM-CO results with2

estimates derived from field measurements revealed
Ža good agreement between both methods Amiotte-

.Suchet and Probst, 1993a,b, 1995 . Nevertheless, it

is not excluded that additional climate effects are

possible. The influence of climatic factors, such as

temperature, on the consumption of atmospheric CO2
by rock weathering has been proposed by several

Žauthors e.g., Garrels and Mackenzie, 1971; Berner
.et al., 1983; Meybeck, 1987; Probst, 1992 .

A climatic influence is indicated if one compares
y Ž .observed HCO fluxes Table 1 for various major3

world rivers with the fluxes calculated by GEM-CO .2
This comparison is shown in Fig. 1a. It is interesting

to note that the observed values and the values

calculated from the model compare well for the

tropical wet climate, whereas the model seems to

underestimate the fluxes for the other climate types
Žfor a definition of the climate types, see Ludwig et

.al., 1996a . Because of the climatic heterogeneity
Žwhich is found in many of the river basins Ludwig

.et al., 1996a , we applied the following method to

test if there may be a systematic deviation of the

observed fluxes from the GEM-CO fluxes with2

respect to climate. We calculated an average specific

HCOy flux with GEM-CO for all climatic subunits3 2

within the basins. Note that all basin grid points that

fall into the same class are taken as one subunit,

which does not necessarily mean that this subunit is

one geographically connected region. The average
Ž .specific flux for the whole basin F is the summodel

Ž .of the specific values F , multiplied by the percent-n

Ž .age that the units occupy in the basin a , dividedn

by 100:

F s a F qa F qa F q . . .qa F r100Ž .model 1 1 2 2 3 3 i i

4Ž .

Specific fluxes are in 103 mol kmy2 yry1, and
Ž .climate types i correspond to those defined in the

legend of Fig. 1a. A multiple regression between the
Ž .observed fluxes F of all basins and the areaobserved

Ž .weighted model fluxes of all climatic subunits a Fn n

in these basins can then help to identify the impor-

tance of each climate type with regard to the devia-

tion between the observed fluxes and the model

fluxes. It leads to the following relationship:

F s 6.55a F q2.91a F q1.30a FŽobserved 4 4 5 5 7 7

q0.85a F r100 5. Ž .8 8

ns31, rs0.95 with P-0.001 for: a F , a F ,4 4 5 5

a F , a F .7 7 8 8

P is the significance level, r the correlation coef-

ficient, and n the number of rivers considered in the

equation. In the regression, we omitted the Danube,

Mahandi, Godavari and Magdalena from the rivers in

Table 1. With these rivers, the regression has a

significant positive intercept. It is interesting to note

that the first three rivers have the greatest percent-
Ž .ages of cultivated area in their basins around 50%
Žcompared to all other rivers in Table 1 see Ludwig

.et al., 1996a . It is therefore not excluded that they

have elevated fluxes because of the use of fertilizers

in their basins. Fertilizers can increase natural HCOy
3

fluxes without consuming CO by dissolving carbon-2

Ž .ate minerals Amiotte-Suchet, 1995 . We do not

know why also the Magdalena River does not fit

here, but since this river has a low data quality index

in Table 1, we did not further follow this question.



Ž .The coefficients in Eq. 5 indicate that in the dry
Ž .temperate is4 and the tundra and taiga climates

Ž .is5 , GEM-CO underestimates considerably the2
y Ž .HCO fluxes. In the temperate wet climate is7 ,3

Ž .the underestimation is less about 30% , while in the
Ž .tropical wet climate is8 the fluxes seem to be

Ž .slightly overestimated about 15% . The tropical dry
Žclimate was not significant in the regression it tends

to have regression coefficients between those of
.a F and of a F . Also the other climate types5 5 7 7

which are partly represented in some of the basins

were not found to be significant, which can be

Table 1

Bicarbonate fluxes of major world rivers

yArea, Q, HCO , DQ Source3
6 2 3 y1 3 y2 y110 km km yr 10 mol km yr

Ž .Amazon 5.903 6300 462 2 1

Ž .Zaire 3.704 1382 823 3 2

Ž .Mississippi 3.246 490 309 3 3

Ž .Ob 3.109 416 236 1 4

Ž .Parana 2.868 541 119 2 5

Ž .Yenisei 2.567 587 279 2 6

Ž .Lena 2.465 532 237 1 7

Ž .Amur 1.926 342 124 1 4

Ž .Nil 1.874 90 122 2 8

Ž .Changjiang 1.822 930 921 3 9

Ž .GangesrBrahmaputra 1.656 1220 1116 3 10

Ž .Mackenzie 1.615 270 291 1 11

Ž .Niger 1.540 200 72 2 12

Ž .Zambesi 1.413 100 29 2 4

Ž .Murray 1.131 12 16 3 13

Ž .St. Lawrence 1.114 450 600 2 14

Ž .Orinoco 1.026 1100 219 2 15

Ž .Indus 0.912 240 654 2 16

Ž .Mekong 0.864 470 526 3 10

Ž .Yukon 0.843 210 467 3 3

Ž .Huanghe 0.823 59 235 2 9

Ž .Danube 0.773 200 801 2 10

Ž .Orange 0.716 11 27 3 10

Ž .Colorado 0.708 20 67 3 3

Ž .Columbia 0.664 186 374 3 3

Ž .Si Kiang 0.464 300 1411 1 17

Ž .Limpopo 0.344 6 37 1 7

Ž .North Dvina 0.329 105 798 1 7

Ž .Godavari 0.311 100 474 1 18

Ž .Magdalena 0.285 240 703 1 10

Ž .Fraser 0.248 98 390 1 4

Ž .Yana 0.243 33 71 1 7

Ž .Mahandi 0.190 94 483 3 19

Ž . Ž .Rio Negro Argentinia 0.175 29 189 1 20

Ž .Hungho 0.159 120 975 1 21

Ž .Basin area was calculated in this study. Q was taken from Global Runoff Data Center Koblenz 1991 , or, if not available, from Milliman et

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .al. 1995 . DQ is a data quality index: 1 poor, 2 sufficient, 3 good. Sources: 1 Probst et al. 1994 ; 2 Probst et al. 1992 ; 3 U.S.

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Geological Survey annual ; 4 Meybeck 1987 ; 5 Kempe 1982 ; 6 Gitelson et al. 1988 ; 7 Livingstone 1963 ; 8 Kempe 1983 ;

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .9 Wei-Bin et al. 1983 ; 10 Meybeck 1979 ; 11 Reeder et al. 1972 ; 12 Martins 1983 ; 13 Herczeg et al. 1993 ; 14 Cossa and

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Tremblay 1983 ; 15 Paolini et al. 1987 ; 16 Arain 1987 ; 17 Qunying et al. 1987 ; 18 Biksham and Subramanian 1988 ; 19

Ž . Ž . Ž . Ž . Ž .Subramanian 1979 ; 20 Depetris 1980 ; 21 Ming-Hui et al. 1982 .



Ž . yFig. 1. a Comparison of the observed HCO fluxes from Table3

1 with the HCOy fluxes calculated with GEM-CO . The rivers3 2

Ž .are grouped according to their average climatic situation. b is as

Ž .a , but adjusted with the climatic correction factors determined in

Ž .Eq. 5 .

explained with the small areas they occupy in the
Ž .basins ice-free polar climate type and their low flux

Ž .contribution in the basins desert climate type .

At first sight, one may be surprised because the

empirical relationships forming GEM-CO were es-2

tablished in the temperate wet climate, but when

applied to the scale of large basins, they fit best in

the tropical wet climate. This may be explained by

the basic relationships of the model, which reflect

uniquely the situation in small watersheds with a
2 Ž .mean size of 8 km Meybeck, 1986 . At the scale of

a large river basin, these watersheds represent more

the headwater regions, where ground water contribu-

tions to the fluxes are normally small with regard to

the lower course of the river. The relationships should

therefore mainly reflect the composition of typical

surface or subsurface waters. Note that the deviation

of the observed fluxes with respect to the GEM-CO2
fluxes generally becomes greater for dryer and colder

Ž .climates, and the coefficients in Eq. 5 decrease in

the order of the increasing specific drainage intensi-

ties we calculate for each climate type. This is

indicating that the deviation of the fluxes may be at

least partly related to the average residence time of

the water in the basins, and thus to the extent of the

water–rock interactions. In the tropical wet climate,

the average residence time of the water is naturally

short because of the great and permanent water flux

in the basins, and the chemical composition of the

river waters probably reflects closest the composition

of surface waters with only relative short contact

with the outcropping lithology.

However, there may also be other effects related

to climate that can influence river bicarbonate fluxes.

For example, in the tropical climate, deep lateritic

formations depleted in alterable minerals are typical

soil formations, which may generally reduce chemi-

cal erosion and, thus, also specific HCOy fluxes.3

Generally, the role of the soils for weathering pro-

cesses is an important question in this context. Since

it can be supposed that much of the CO involved in2

the weathering reactions may originate from the soils

via the biological respiration of organic matter, the

CO consumption by rock weathering should also be2

Ženhanced by elevated pCO values partial pressure2

.of CO in the soils. Very little is known about the2

spatial and temporal variability of this parameter at

the global scale. It is possible that in certain regions,

the pCO values in the soils may be especially2

elevated in winter when the soils are covered by a

snow cover, preventing the CO to degas to the2

Ž .atmosphere. Also this could explain why in Eq. 5

great regression coefficients are found for the colder

climate types. In Fig. 1b, we corrected the GEM-CO2
fluxes of Fig. 1a for each climate by a simple

multiplication with the coefficients determined in Eq.
Ž .5 . For the climates that were not found to be



significant in the regressions, the fluxes remained

unchanged. The corrected fluxes compare now better

with the observed ones.

4. Organic carbon fluxes

In the following, we discuss the main relation-

ships that control organic carbon fluxes at the global

scale. Analogous to GEM-CO , we will call these2

relationships the Global Erosion Model for organic
Ž .carbon GEM-C . The flux of atmospheric COorg 2

consumed by the erosion of organic matter is thus

F .CO -OM2

4.1. DissolÕed organic carbon

Multiple regression analyses based on the average
Ž .DOC fluxes F observed for various world riversDOC

Žmany of the data are summarized, for example, in
.the work of Degens et al., 1991 and the environ-

mental characteristics of their river basins indicate
Ž .that drainage Q , the steepness of morphology, and

Ž .the amount of carbon stored in soils soil C are the

main factors that control DOC fluxes globally
Ž .Ludwig et al., 1996a . Based on the datasets used in

this study, the following equation is the best model

to estimate DOC fluxes:

F s0.0044 Qy8.49 slopeq0.0581 soil CDOC

rs0.90, P-0.0001, ns29 6Ž .

All parameters are significant at least with P-0.01.

F is given in t kmy2 yry1, Q in mm yry1, slopeDOC

in radian, and soil C in kg my3. DOC fluxes become

greater with increasing drainage intensities, flatter

morphologies, and larger carbon reservoirs in the

soils. This suggests that soils are globally the major

contributors to riverine DOC, which corresponds to

the general assumption in most of the studies on this

topic. However, it is only recently that scientists

have become aware that basin morphology may also

play an important role in controlling organic carbon
Ž .fluxes e.g., Clair et al., 1994; Ludwig et al., 1996a .

4.2. Particulate organic carbon

Among all factors that may control the export of

particulate organic carbon on a global scale, it is the

Ž .total suspended sediment TSS flux that shows the

most significant relationship with the POC flux
Ž .F . The POC percentage in the riverine sus-POC

pended solids generally decreases with increasing

sediment concentrations following a nonlinear rela-

tionship that has been described by Ludwig et al.
Ž .1996a .

A reliable extrapolation of POC fluxes over the

total continents requires thus the creation of an addi-

tional dataset for sediment fluxes. For this study, we

created a global dataset on TSS fluxes by an extrapo-

lation of observed river data, coupled to an empirical

relationship between sediment fluxes and a morpho-
Žclimatic index for details, see Ludwig et al., 1996a;

.Ludwig and Probst, 1996, 1998 . It yields a quantity

of 18.9 Gt yry1 for the total sediment flux to the

oceans, what is in good agreement with the recent
Ž .estimate of Milliman and Syvitski 1992 who as-

sumed that the total sediment flux may be about 20

Gt yry1. From this dataset, we derived then global

F .POC

5. Global and regional budgets for present-day

erosion fluxes

Fig. 2 summarises our approach to predict the

atmospheric CO consumption by continental ero-2

sion at the global scale. We calculate that continental

weathering represents a sink for atmospheric CO of2

0.625 Gt Cryr. A total of 0.205 Gt can be attributed

to DOC, 0.187 Gt to POC, and 0.233 Gt to HCOy
3

coming from the atmosphere. HCOy that originates3

from carbonate dissolution makes an additional flux
Ž .F of 0.096 Gt Cryr. Fig. 3a–c show the corre-carb

sponding maps of F , F , and F , re-DOC POC CO -RW2

spectively. The fluxes agree well with other literature
Ž .estimates see Section 1 , confirming the applicabil-

ity of our method. Only HCOy fluxes are somewhat3

lower. If one corrects them for climatic effects ac-
Ž .cording to Eq. 5 , they become about 34% greater.

In Table 2, carbon fluxes are further regionalized

with respect to major climates, different continents,

and different ocean basins. Also here, possible cli-

matic effects on inorganic carbon fluxes are listed.

Since the corrected figures indicate possible trends

rather than to display precise figures, we discuss and

present here principally the non-corrected GEM-CO2



Fig. 2. Flow diagram of the approach applied in this study in order to predict the consumption of atmospheric CO by continental erosion2

Ž .F . AT, mean annual temperature; APPT, annual precipitation total; Litho, global lithology; Q drainage intensity; Soil C, organic soilCO 2
Ž .carbon; Four, index to characterize variability of precipitation over the year Ludwig et al., 1996a ; FTSS, sediment flux; F flux ofCO ŽRW .2

CO consumed by rock weathering; F , flux of dissolved organic carbon; F , flux of particulate organic carbon. Circles represent2 DOC POC

global datasets while rectangles represent basic empirical relationships.

output. Climatic effects are only included if it is

mentioned in the text. We consider, however, the

corrected values to represent the possible bias of the

GEM-CO output with respect to the real fluxes at2

the global scale.

Table 2 shows that for all carbon forms, the

tropical wet climate is the most important climate for

the consumption of atmospheric CO by continental2

erosion. This points out the important role of drainage

intensity for the carbon fluxes. 54.9% of total

F , 53.9% of total F , and 49.6% of totalCO -RW POC2

F are discharged from the wet tropics to theDOC

oceans. Note that the corresponding runoff accounts

for 50% of the global runoff.

The influence of lithology on F becomesCO -RW2

evident at the continental and regional scale. For

example, in Africa the specific F is about fiveCO -RW2

times smaller than in South America, while the

specific drainage intensity is only three times greater

in South America. In Africa, plutonic and metamor-

phic rocks as well as sandstones are abundant over

large areas. Because these rock types consume small

amounts of atmospheric CO , this continent has low2

specific F values. On the other hand, by farCO -RW2

the greatest values for the specific F areCO -RW2

observed in the south and south-east of Asia, where

large carbonate outcrops coincide with a great

drainage intensity. Among the major rock types,

carbonates consume the greatest amount of atmo-
Ž .spheric CO Amiotte-Suchet and Probst, 1993a .2

This makes Asia to be the continent with the highest

specific F . We calculate that 22.7% of globalCO -RW2





Table 2

Regional distribution of river carbon fluxes to the oceans

Ž . Ž . Ž . Ž . Ž . Ž .Area, a b c d % of c , Effects on cqd
3 210 km F , F , F , F , consumed on according toDOC POC CO -RW carb2

12 y1 12 y1 12 y1 12 y1 Ž .10 g yr 10 g yr 10 g yr 10 g yr carbonates Eq. 5 , %

Ž .Polar without ice 3892 3.1 1.7 3.4 1.5 45.3 0.0

Tundra and Taiga 23 232 45.9 18.9 33.5 9.2 27.5 191.0

Temperate dry 9635 2.9 10.9 4.4 2.1 46.9 555.0

Temperate wet 16 918 35.4 33.6 48.4 26.3 54.4 30.0

Tropical dry 21 790 16.0 18.2 15.1 5.8 38.4 0.0

Tropical wet 24 919 101.7 100.9 128.1 51.0 39.8 y15.0

Desert 5940 0.3 2.9 0.4 0.2 59.5 0.0

Total 106 326 205.2 187.1 233.3 96.2 41.2 34.2

Africa 18 288 20.0 16.3 11.7 5.2 44.5 y1.6

Europe 9564 16.6 11.0 18.8 7.8 41.3 90.2

North America 23 020 39.4 30.3 41.1 18.4 44.7 68.0

South America 17 732 51.8 44.0 53.6 8.5 15.8 y5.1

Asia 32 518 73.0 82.4 105.8 56.3 53.2 32.9

Australia 4476 3.9 2.7 2.2 0.1 2.1 28.1

Antarctis 728 0.6 0.5 0.1 0.0 0.0 y0.7

Total 106 326 205.2 187.1 233.3 96.2 41.2 34.2

Arctic Ocean 16 982 24.9 7.0 20.9 6.7 32.2 176.0

North Atlantic 27 300 71.0 47.8 72.9 24.2 33.2 20.5

South Atlantic 16 959 25.7 15.1 15.8 5.2 32.8 5.2

Pacific 21 025 57.0 75.2 80.7 34.1 42.3 21.6

Indian Ocean 16 594 21.4 36.1 33.4 21.0 63.0 28.9

Mediterranean 6739 4.6 5.4 9.5 4.9 51.4 74.6

Below 608 south 728 0.6 0.5 0.1 0.0 0.1 1.2

Total 106 326 205.2 187.1 233.3 96.2 41.2 34.2

Ž .Column 7 gives the percentage of F consumed over carbonate rocks. Column 8 shows the increase or decrease in % of the fluxesCO -RW2

Ž .in columns 4 and 5 after correction of possible climatic effects according to Eq. 5 .

F is discharged to the oceans from the part ofCO -RW2

Asia between 758 to 1358N longitude and 108 to 408

latitude, although this region covers only about 9.4%

of the total exoreic continental area.

At the same time, the south and south-east of Asia

is of similar importance for flux of particulate or-

ganic carbon because of great sediment fluxes typi-

cal for this part of the world. 23.3% of global FPOC
is discharged from this region to the oceans. For

F , this is only 13%. Neglecting the morphologi-DOC

cal effect, which tends to average out over large

scales, dissolved organic carbon fluxes are princi-

pally a function of the variation of drainage intensity

together with the variation of the soil carbon pool.

Thus, for a constant Q, fluxes increase towards the

northern regions with generally greater amounts of

carbon in the soils. Therefore, in the tundra and taiga

climate F is more important than the fluxes ofDOC

Ž .other carbon forms Ludwig et al., 1996a .

It is important to note that after a correction for

climatic effects, the consumption of atmospheric CO2
by rock weathering north of 308N becomes almost

Ž .twice as great Fig. 4 . In this case, F in theCO yRW2

tropical wet climate clearly falls below the fluxes of

Ž y2 y1. Ž . Ž .Fig. 3. Estimated river carbon fluxes t km yr to the oceans. Endoreic basins and glaciated regions are omitted: a F , b F ,DOC POC

Ž .and c F .CO -RW2



Fig. 4. Latitudinal distribution of river carbon fluxes to the oceans,

Ž . Ž .before a and after b correction for possible climatic effects for

Ž .F according to Eq. 5 .CO -RW2

Žthe cooler northern climates temperate wet and tun-
.dra and taiga . Without correction, 68.1% of F ,DOC

69.4% of F , and 69.6% of F are con-POC CO yRW2

sumed over the Northern Hemisphere. With correc-

tion, F increases to 76.9%, indicating thatCO yRW2

the total amount of atmospheric CO consumption2

north of the equator may total about 0.50 Gt Cryr.

At the same time, the fluxes of the dissolved carbon
Ž .forms F qF become much more impor-DOC CO -RW2

tant towards the north compared to F .POC

6. Implications for the role of continental erosion

during the last glacial maximum

It has been proposed that increased erosion fluxes

may have at least partly contributed to the low

atmospheric CO concentrations during the last2

Žglacial maximum e.g., Munhoven and François,
.1994 . In the geochemical carbon cycle, the atmo-

spheric CO consumption resulting from carbonate2

weathering is normally balanced in relative short

time scales by carbonate sedimentation in the oceans,

where all CO is released back to the oceanratmo-2

Ž Ž . .sphere system Eq. 3 , from the right to the left .

This is not the case for CO consumed by silicate2

weathering or by organic matter erosion, where the

carbon that is lost by carbonate and organic matter

sedimentation only returns to the oceanratmosphere

system via metamorphismrvolcanism. A part of the

organic carbon returns also to the atmosphere by the
Ž .slow oxidation of old sediment carbon kerogen in

Ž .sedimentary rocks e.g., Kramer, 1994 . Because the

latter processes can vary considerably over geologi-

cal time scales, this may result in large perturbations

of atmospheric CO .2
The most efficient way to increase erosion fluxes

would be an increase of the continental area together

with an increasing drainage intensity. Assuming that

weathering is negligible under the extended ice

sheets, the effective erodible continental area does

not change much from LGM to present-day because

the lost of area caused by ice extensions is more or

less compensated by a greater exposure of shelf area
Ž .when the sea level recedes Fairbanks, 1989 . An

important point is, however, whether the assumption

that there is no weathering taking place underneath

ice sheets is correct or not. When analysing melt
Ž .waters from a Swiss glacier, Sharp et al. 1995 have

observed higher CO consumption rates underneath2

the ice-cover than in a non-glaciated catchment. If

this high consumption rate holds also for extended

parts of the glacial ice sheets, the area actually

subject to chemical weathering could have been con-

siderably larger at LGM than it is today. Extensive

chemical weathering could have occurred at least at

the margins of ice sheets during glacial periods,

where melt waters were in contact both with atmo-

spheric CO and large amounts of fine grained glacial2

debris. This may have especially affected silicate

erosion, because shales, which show among the sili-

cate rocks the greatest specific CO consumption2

Ž .Amiotte-Suchet and Probst, 1993a , are widely out-

cropping in the northern latitudes above 408N.

Little is known about drainage intensity during

LGM. Reconstruction of vegetation distribution based

on palynological, pedological, and sedimentological

evidence reveals globally a much greater aridity
Ž .during LGM than today Adams et al., 1990 , indi-

cating that this may also have had a lower river
Ž .discharge as a consequence Starkel, 1988 . This is

in contradiction with results from climate simula-
Ž .tions done with General Circulation Models GCM

under LGM boundary conditions. Such simulations



predict generally a too low reduction of land precipi-

tation compared to the predicted decrease of land

temperatures and, thus, decrease of evaporation
Ž .Lautenschlager and Herterich, 1990 , leading to an

unchanged or even greater amount of water running
Žoff the continents e.g., Gibbs and Kump, 1994;

.Munhoven and Probst, 1995 . The question to what

amount the continental runoff may have been differ-

ent during LGM compared to present-day must

therefore be left open, but answering it is crucial in

order to estimate possible changes in the global

carbon cycle related to continental erosion, as we

have shown in the previous sections of this paper.

The next important factor is global lithology.

Even without changing the total amount of runoff,

one may end up in an increased net CO consump-2

tion if climate zones with high drainage intensity

shift considerably and encompass more and more

highly erodible silicate rocks. Since one can suppose

that also for the LGM climate, drainage intensity

should have been greatest in the low latitudes, the

changes in the lithological distribution related to the

emerging continental shelves may have been more

important than the changes in lithology due to the ice

sheet extension. Assuming that continental shelves

consist largely of carbonates, it is possible that

F may have been somewhat enhanced com-CO -RW2

pared to present-day on the whole, but there is no

evidence for much greater fluxes from silicate

weathering related to changes in lithology. To con-

firm such a hypothesis, however, a detailed knowl-

edge of the lithological character of the shelf sedi-

ments is needed.

One has to look at possible changes in the fluxes

of organic carbon. F is related to the amount ofDOC

carbon stored in the soils, indicating lower fluxes
Žduring the LGM compared to present not consider-

ing here, of course, the open question about a possi-
.ble increase in the amount of total runoff . Taking,
Ž .for example, the estimate of Adams et al. 1990 that

the global soil carbon pool during LGM was reduced
Ž .by about 770 Gt, we result with Eq. 6 in a global

reduction of F of about 19% under the assump-DOC

tion that Q and slope were the same as the present-

day values. Since also POC can be supposed to
Žoriginate mainly from soil carbon Ludwig et al.,

.1996a , the effect for F should go in the samePOC

direction.

Finally, one should also to mention here that it is

not only the amount of carbon discharged by rivers

but also the oceanic response to this carbon input

that determines the role of continental erosion in the

glacialrinterglacial carbon cycle. For the present-day

cycle of organic carbon in the oceans, Smith and
Ž .Hollibaugh 1993 found that about equal amounts of

the riverine input were involved in the coastal cycle

and in the open ocean cycle, but the ratio of burial to

respiration in the coastal zone may be about 6 to 4,

while it is only about 1 to 9 in the open ocean. If this

can be extrapolated to LGM, one may conclude that

due to the reduced shelf area, greater amounts of

riverine organic matter may have reached the open

ocean, leading to much lower sedimentation and

greater respiration rates in the ocean compared with

today. Even if the river inputs were lower during

LGM, the amount of carbon that returned to the

atmosphere may not have changed or it became even

greater than for present day.

In this context, there is also another point of
Ž .interest: Franzen 1994 proposed that peat deposits´

of late Eem-interglacial may have been as great as

250–550 Gt C in the regions that were affected by

the ice sheets during LGM. Because actually there is

no evidence for the existence of large peat deposits

at LGM, he supposed that nearly all of these deposits

have been destroyed and washed out by melt waters

during the retreat of the ice masses at the end of

LGM. This should have led to a considerable peak in

organic carbon erosion, and a large amount of this

carbon may have ended up in the oceans. Oceanic

respiration of this carbon could have accounted for at

least a part of the increase of the atmospheric and

terrestrial carbon pools during the Holocene.

7. Conclusions

With the present study, we propose a modelling

tool to predict the consumption of atmospheric CO2
by continental erosion at the global scale. This ap-

proach includes both the CO consumption resulting2

from rock weathering and from the erosion of or-

ganic matter. At present-day, continental erosion rep-

resents a carbon transfer of about 0.6 to 0.7 Gt Cryr

from the atmosphere to the oceans. High levels of



CO consumption in the Northern Hemisphere coin-2

cide with the net sink of atmospheric CO on the2

continents that has been postulated by Tans et al.
Ž .1989 because of the inconsistency of the observed

latitudinal CO gradient in the atmosphere with the2

transport fields generated by a general circulation

model. About 0.5 Gt Cryr are consumed north of

the equator, accounting for about 15 to 25% of the
Ž .sink calculated by Tans et al. 1989 . An important

question in order to evaluate the role of these fluxes

in the global carbon cycle is the oceanic response to

the river carbon input. It is especially not clear how

much of this carbon is trapped in the estuaries and

coastal zones, either by sedimentation or by return-

ing to the atmosphere through respiration processes
Ž .Kempe, 1995; Ludwig et al., 1996b .

Our approach may be further applied to predict

the response of continental erosion in the glacialrin-

terglacial carbon cycle change since the last glacial

maximum. At present, it is difficult to estimate such

a response because there is insufficient information

about the hydroclimatic situation during LGM. It is

especially not clear to what extent the amount of

global runoff changed, which is, as our results imply,

the most important controlling factor for present-day.

Another open question concerns the rates of chemi-

cal weathering that may take place underneath and at

the margins of ice sheets. Finally, more work has to

be devoted to study the influence of climate on rock

weathering. We present indications that, for a given

drainage and a given lithology, HCOy concentra-3

tions are greater on average in dry and cold climates

than in wet and hot ones. If this is right, it may also

have influenced weathering during LGM.
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