82 research outputs found

    Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    Get PDF
    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease

    The Influence of Observation Errors on Analysis Error and Forecast Skill Investigated with an Observing System Simulation Experiment

    Get PDF
    The Global Modeling and Assimilation Office (GMAO) observing system simulation experiment (OSSE) framework is used to explore the response of analysis error and forecast skill to observation quality. In an OSSE, synthetic observations may be created that have much smaller error than real observations, and precisely quantified error may be applied to these synthetic observations. Three experiments are performed in which synthetic observations with magnitudes of applied observation error that vary from zero to twice the estimated realistic error are ingested into the Goddard Earth Observing System Model (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation for a one-month period representing July. The analysis increment and observation innovation are strongly impacted by observation error, with much larger variances for increased observation error. The analysis quality is degraded by increased observation error, but the change in root-mean-square error of the analysis state is small relative to the total analysis error. Surprisingly, in the 120 hour forecast increased observation error only yields a slight decline in forecast skill in the extratropics, and no discernable degradation of forecast skill in the tropics

    Quantitative analysis of ruminal bacterial populations involved in lipid metabolism in dairy cows fed different vegetable oils

    Get PDF
    Vegetable oils are used to increase energy density of dairy cow diets, although they can provoke changes in rumen bacteria populations and have repercussions on the biohydrogenation process. The aim of this study was to evaluate the effect of two sources of dietary lipids: soybean oil (SO, an unsaturated source) and hydrogenated palm oil (HPO, a saturated source) on bacterial populations and the fatty acid profile of ruminal digesta. Three non-lactating Holstein cows fitted with ruminal cannulae were used in a 3x3 Latin square design with three periods consisting of 21 days. Dietary treatments consisted of a basal diet (Control, no fat supplement) and the basal diet supplemented with SO (2.7% of dry matter (DM)) or HPO (2.7% of DM). Ruminal digesta pH, NH3-N and volatile fatty acids were not affected by dietary treatments. Compared with control and HPO, total bacteria measured as copies of 16S ribosomal DNA/ml by quantitative PCR was decreased (P < 0.05) by SO. Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica loads were not affected by dietary treatments. In contrast, compared with control, load of Prevotella bryantii was increased (P < 0.05) with HPO diet. Compared with control and SO, HPO decreased (P < 0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P < 0.05) in ruminal digesta by SO compared with control and HPO. In conclusion, supplementation of SO or HPO do not affect ruminal fermentation parameters, whereas HPO can increase load of ruminal P. bryantii. Also, results observed in our targeted bacteria may have depended on the saturation degree of dietary oils

    An OSSE Investigating a Constellation of 4-5 Micrometer Infrared Sounders

    Get PDF
    NASA is investigating the utility of a strategically-constructed constellation of infrared sounders on board small satellites to be able to ultimately provide spaceborne measurements of wind. The method proposed by instrument teams is to fly multiple instruments in complementary orbits so that atmospheric motion vector measurements can be made. As part of the investigation of this measurement approach, the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center performed a set of Observing System Simulation Experiments (OSSEs) to demonstrate the value of the wind measurements as well as the corresponding infrared radiance observations that will come from the constellation. This work was an extension of the GMAO OSSE infrastructure and is in the context of the MISTIC Winds concept. It is noted, though, that this provided insight to the overall measurement strategy. This talk addresses the simulation of the atmospheric motion vectors retrieved via the constellation, the simulation and validation of the radiance observations measured via the constellation, the specification of observations errors for both winds and radiances, and the extension of the data assimilation system to utilize these additional observations on top of a full global observation system. Finally, the results from a set of OSSE experiments is presented

    CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Get PDF
    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation

    Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages

    Get PDF
    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain preexposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in futur

    Curative Effect of 18Ξ²-Glycyrrhetinic Acid in Experimental Visceral Leishmaniasis Depends on Phosphatase-Dependent Modulation of Cellular MAP Kinases

    Get PDF
    We earlier showed that 18Ξ²-glycyrrhetinic acid (GRA), a pentacyclic triterpenoid from licorice root, could completely cure visceral leishmaniasis in BALB/c mouse model. This was associated with induction of nitric oxide and proinflammatory cytokine production through the up regulation of NF-ΞΊB. In the present study we tried to decipher the underlying cellular mechanisms of the curative effect of GRA. Analysis of MAP kinase pathways revealed that GRA caused strong activation of p38 and to a lesser extent, ERK in bone marrow-derived macrophages (BMDM). Almost complete abrogation of GRA-induced cytokine production in presence of specific inhibitors of p38 and ERK1/2 confirmed the involvement of these MAP kinases in GRA-mediated responses. GRA induced mitogen- and stress-activated protein kinase (MSK1) activity in a time-dependent manner suggested that GRA-mediated NF-ΞΊB transactivation is mediated by p38, ERK and MSK1 pathway. As kinase/phosphatase balance plays an important role in modulating infection, the effect of GRA on MAPK directed phosphatases (MKP) was studied. GRA markedly reduced the expression and activities of three phosphatases, MKP1, MKP3 and protein phosphatase 2A (PP2A) along with a substantial reduction of p38 and ERK dephosphorylation in infected BMDM. Similarly in the in vivo situation, GRA treatment of L. donovani-infected BALB/c mice caused marked reduction of spleen parasite burden associated with concomitant decrease of individual phosphatase levels. However, activation of kinases also played an important role as the protective effect of GRA was significantly abrogated by pharmacological inhibition of p38 and ERK pathway. Curative effect of GRA may, therefore, be associated with restoration of proper cellular kinase/phosphatase balance, rather than modulation of either kinases or phosphatases

    Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals

    Get PDF
    To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of positioned nucleosomes
    • …
    corecore