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ABSTRACT

The spectra of analysis and forecast error are examined using the observ-

ing system simulation experiment (OSSE) framework developed at the Na-

tional Aeronautics and Space Administration Global Modeling and Assimi-

lation Office (NASA/GMAO). A global numerical weather prediction model,

the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Sta-

tistical Interpolation (GSI) data assimilation, is cycled for two months with

once-daily forecasts to 336 hours to generate a control case. Verification of

forecast errors using the Nature Run as truth is compared with verification

of forecast errors using self-analysis; significant underestimation of forecast

errors is seen using self-analysis verification for up to 48 hours. Likewise, self

analysis verification significantly overestimates the error growth rates of the

early forecast, as well as mischaracterizing the spatial scales at which the

strongest growth occurs. The Nature Run-verified error variances exhibit a

complicated progression of growth, particularly for low wavenumber errors.

In a second experiment, cycling of the model and data assimilation over

the same period is repeated, but using synthetic observations with different

explicitly added observation errors having the same error variances as the

control experiment, thus creating a different realization of the control. The

forecast errors of the two experiments become more correlated during the

early forecast period, with correlations increasing for up to 72 hours before

beginning to decrease.
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2 N. C. PRIVÉ
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1 Introduction

The evolution of error growth in numerical weather prediction from the analysis state to

the extended forecast has been of interest since the early development of atmospheric

models (Thompson, 1957; Lorenz, 1963; Charney et al., 1966; Smagorinsky, 1969; Lorenz,

1993). Understanding the nature of error growth helps provide guidance for the best

methods of reducing forecast error, as well as quantification of the uncertainty of

predictions. Previous studies of error growth have ranged from theoretical approaches

(Lorenz, 2011; Leith and Kraichnan, 1972; Leith, 1974) and simplified and toy model

investigations (Lorenz, 1963; Lorenz and Emanuel, 1998), to diagnostics of operational

numerical weather prediction (NWP) systems (Lorenz, 1982; Simmons and Hollingsworth,

2002; Palmer and Hagedom, 2006).

While it is desirous to investigate error growth with full-scale forecast models in order

to retain the complexity of operational systems, there are some limitations to the use of

standard output from numerical weather prediction models. The greatest impediment to

the study of analysis and short-term forecast errors in an operational system is the lack of

a ‘truth’ for verification. In most cases, the analysis state has been generated using all

available high-quality observations, so that there is no generally more reliable measure of

the atmospheric state that could be used as truth to quantify the analysis error. However,

the analysis itself has errors that are not significantly smaller than the magnitude of

short-term forecast errors, resulting in difficulty characterizing short-term forecast errors.

The short term forecast error is of particular interest, as the background error estimate

should be as accurate as possible to optimize the efficacy of the data assimilation system.

Short term forecast errors have been estimated by comparison of the model state with high

quality observational sets (ex. Hollingsworth and Lonnberg, 1986; Andersson et al., 2000),

but these studies are limited to cases where a reliable verification dataset is available.

Simple estimates of error variance often take the form of exponential growth (Lorenz,

1982) during the early forecast period, with error asymptoting to a saturation value at

long forecast times (Leith, 1978) and an additional component of model error due to time

independent or white noise. While early efforts such as Dalcher and Kalnay (1987) and
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ERROR SPECTRA IN AN OSSE 3

Simmons et al. (1995) found that the model error term was not necessary to obtain a good

fit of theory to actual forecast error for 500 hPa geopotential height, other studies

(Savijärvi (1995) and Simmons and Hollingsworth (2002) ) found that model error was

required to make a close fit between theory and forecast error growth. These studies were

not able to examine the growth of forecast errors prior to the 24 hour forecast time. Orrell

et al. (2001) and Tribbia and Baumhefner (2004) employed ‘imperfect twin’ model

experiments to explore the role of model error, but the model errors in these types of

studies was relatively simple.

Relatively few investigations of forecast error spectra have been performed using

operational NWP systems. Dalcher and Kalnay (1987) and Boer (1994) examined error

spectra for the European Centre for Medium-Range Weather Forecasts (ECMWF) model,

while Savijärvi (1995) investigated the National Meteorological Center (NMC)

Medium-Range Forecast (MRF) model and Boer (2003) evaluated error spectra of the

Canadian Meteorological Centre (CMC) model. These studies were not able to calculate

error spectra of the analysis or initial forecast period.

A tool that can be used to evaluate the errors in the very early forecast period is an

observing system simulation experiment (OSSE). In an OSSE, the ‘truth’ is known in the

form of a long, free-running model forecast called the nature run (NR). This NR replaces

the actual atmosphere in the experiment, with all observations simulated from the NR

fields and then assimilated into an NWP model analysis and forecast. One major

advantage of an OSSE is that the analysis and forecast errors may be explicitly calculated

with respect to the NR. Another virtue of the OSSE framework is the ability to directly

manipulate the qualities of the simulated observations, particularly the observation errors.

Of course, this only provides useful information about the real problem in so far as the

OSSE validates (Errico et al., 2013; Privé et al., 2013c).

The National Aeronautics and Space Administration Global Modeling and Assimilation

Office (NASA/GMAO) has developed a global OSSE framework to support efforts to

improve data assimilation techniques as well as the development of new observing systems.

The GMAO OSSE has been used to explore both model error (Privé et al., 2013b) and

observation error (Privé et al., 2013a), in both cases with a focus on forecasts of up to 120

hours. In the present study, the progression of error from the analysis state to the extended

forecast is examined using the GMAO OSSE to explicitly calculate error. The spectral

characteristics of the error are also evaluated as the forecast progresses.
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4 N. C. PRIVÉ

The experimental method is given in Section 2, the results are described in Section 3,

and the findings are discussed in Section 4.

2 Method

The GMAO global OSSE has been extensively calibrated as documented by Errico et al.

(2013) and Privé et al. (2013c). The NR employed is a 13-month free forecast of the

ECMWF operational model version c31r1, run at T511 horizontal resolution with 91

vertical levels and 3-hourly output. The NR initiates on 01 May 2005 and ends on 31 May

2006, using archived fields of sea surface temperature and sea ice during this period but

with all other variables generated by the free-running model. Ideally, the NR should

accurately simulate reality for all phenomena of interest. The climatology of the ECMWF

NR has been evaluated and found sufficiently realistic (Reale et al., 2007; McCarty et al.,

2012).

The NR is used both as the verifying truth and as the source of observations ingested

in the data assimilation experiments. The NR fields are used to generate synthetic

observations by simple temporal-spatial interpolation and by application of forward

models, as required. The times and locations of real observations from 2011 are used in

conjunction with the NR fields to generate the synthetic observations, thus preserving the

idiosyncracies of the distribution of actual data availability. The Community Radiative

Transfer Model (CRTM, Han et al. (2006)) is used along with the NR fields of

temperature, clouds, and atmospheric composition to generate observations for AMSU-A,

AIRS, HIRS-4, MHS, and IASI. Also interpolated from the NR fields are GPSRO and

conventional data types.

Although some representativeness error is created implicitly, it is expected that the

magnitude of this error is considerably smaller than the actual error of real observations.

Instrument error must also be added. Therefore, simulated errors are generated and added

to the synthetic observations to increase the realism of the OSSE. The synthetic errors are

calibrated so that covariance statistics of observation innovation and analysis increments in

the OSSE are similar to the same statistics for assimilation of real observations, in a

method described by Errico et al. (2013). The observing network has been updated from

2005 to 2011 in comparison to Errico et al. (2013). The synthetic errors include both

random, uncorrelated errors, and an additional correlated error component for some
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ERROR SPECTRA IN AN OSSE 5

observational types. Specifically, vertically correlated errors are included for conventional

sounding data, and channel correlated errors are introduced to AIRS and IASI. HIRS,

AMSU-A and -B, MHS, and MSU have a component of horizontally correlated error.

To avoid the ‘identical twin’ problem, a different forward model is used to generate

forecasts in the OSSE. In the GMAO OSSE, the Global Earth Observing System version

5.10.3 (GEOS-5, (Rienecker et al., 2008)) is used with the Gridpoint Statistical

Interpolation (GSI, (Kleist et al., 2009)) data assimilation system (DAS). A cube-sphere

grid with 180 gridpoints along each edge of the cube (approximately equivalent to 0.5◦

horizontal resolution at the equator) was employed with 72 hybrid vertical coordinate (η)

levels. The forecast skill in the OSSE has been validated against the real world in the same

manner as described by Privé et al. (2013c), with the forecasts in the OSSE found to have

somewhat greater skill than for real data. The increased forecast skill is not expected to

significantly impact the results of this study.

An experimental Control case is generated, wherein the OSSE is cycled using a baseline

set of synthetic observations from 15 June 2011 to 5 September 2011, with 336 hour (14

day) forecasts launched once daily at 0000 UTC. The baseline set of synthetic observations

are those observations generated as part of the calibration process. The analysis and

forecasts are examined from 1 July to 31 August, discarding the June period as spin-up.

3 Results

The spectra are specified in terms of total wavenumber n for 2-dimensional spherical

harmonic functions computed on the model η surfaces. Coefficients for those functions are

computed using the generalized discrete transforms described by Swartzrauber and Spotz

(2000). Note that each value of n may have associated values of zonal wavenumber m

between 0 and n, as illustrated by Baer (1972). The time mean fields are removed from all

spectral calculations.

All calculations are performed on the η-surface vertical levels native to the GEOS

model, rather than on pressure surfaces. Close to the earth’s surface, the spectra reflect the

topographics of sea-land contrasts present on terrain-following coordinate surfaces, but

above 150 hPa, these surfaces are identical to constant pressure surfaces.
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6 N. C. PRIVÉ

3.1 Forecast Error Spectra

Error variance spectra show the differential evolution of forecast errors over a range of

spatial scales, and also provide insight into the process of error cascade. Spectra of the

forecast errors for the Control case from the analysis time to forecast day 14 are shown in

Figure 1 for temperature, specific humidity, and wind.

The forecast errors are saturated at the analysis time at wavenumbers higher than 200

(see Errico and Privé (2013)), in that the errors do not increase further with forecast time.

At saturation, the error variance would be sum of the variance of the NR fields and the

variance of the experimental forecast, assuming that the covariance between the NR and

the forecast approaches zero. An estimate of this error variance at saturation is the sum of

the variances of the transient fields from the NR and from the day 14 forecast; these

estimates are indicated by the heavy lines in Figure 1. Saturation quickly spreads to all

wavenumbers above 100 by day two for T and q, and by day three for rotational wind. For

temperature and moisture, the initial analysis error peaks in the range of wavenumbers

10-20, with a peak closer to wavenumber 20 for wind. The peak error shifts to lower

wavenumbers as the forecast progresses, with peak error at day 14 near wavenumber 7 for

temperature, wavenumber 10 for q, and in the range of wavenumbers 8-10 for wind. By day

14, the error is close to saturation for all fields except at very low wavenumbers.

As saturation is reached by day 14 for wavenumbers greater than 20, the slope of the

error spectra can be calculated and compared with theory. For temperature, the slope of

the spectra from wavenumbers 20 to 200 is close to -3, with slope of -3.25 for rotational

wind. The slopes in this portion of the spectra for these fields are comparable to other

models and agree with observations (Tulloch and Smith, 2006). Specific humidity has a

much shallower slope of -1.6 in this wavenumber range, close to 5
3
, indicative of the

dominance of mesoscale activity (Gage, 1979). Above wavenumber 200, the spectral slopes

increase to near -6.6 for temperature and wind, and -3.4 for specific humidity. This sharp

decrease in slope at high wavenumbers is likely due to model damping processes (Augier

and Lindborg, 2013), and is in contrast to real world observations which show a flattening

of the slope to approximately 5
3
at high wavenumbers (Nastrom and Gage, 1985).

Figure 2 shows the ratio of errors at the end of a 24 hour period to the errors at the

beginning of the period, a measure of the 24 hour error growth. For purely exponential

error growth, the ratio of errors in Figure 2 would remain constant with time, with ratios
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greater than one for growing errors and ratios less than one for exponentially decaying

errors. For 506 hPa temperature, the peak error growth during the first 24 hours of the

forecast occurs near wavenumbers 6-7, then shifts to scales between wavenumbers 10-20

through forecast day four. After day four, the magnitude of peak error growth begins to

decline as the peak shifts slowly toward lower wavenumbers. The fastest error growth

occurs during the first 120 hours of the forecast, with doubling of error variances over a

24-hour period.

Specific humidity shows a much more complicated growth pattern. The strongest

growth is seen during the first 24 hours, with the peak growth at very low wavenumbers.

From 24 to 48 hours, the peak error growth shifts to wavenumbers 40-50, with near zero

error growth at low wavenumbers. From 48 to 72 hours, there is a decrease in error at

wavenumbers less than 5, with peak error growth near wavenumber 30. From day 5 to day

6, the error at low wavenumbers increases, with peak error growth occurring near

wavenumber 7, while error growth at high wavenumbers declines. After day 6, there is a

more continual decrease of error growth and a shift in peak error growth toward lower

wavenumbers. It has been argued (Reynolds et al., 1994; Privé et al., 2013b) that the

behavior of error growth during the first day is a consequence of model error.

Upper tropospheric rotational wind error growth follows a simple, classical progression.

Initial error growth peaks between wavenumbers 20-25, with error more than doubling in

the first 24 hours. Strong error growth continues through day 3, with the peak error

growth shifting to lower wavenumbers. After day 3, the peak wavenumber continues to

shift toward lower wavenumbers and the magnitude of peak growth steadily declines,

nearing saturation by day 12.

3.2 Analysis Verification

It is of interest to compare the ‘true’ forecast error verified against the NR with the

commonly used metric of forecast error verified against the analysis. These two

descriptions of the error will generally differ. Verification against analysis is generally only

used for forecasts at 24 hours or longer due to the incestuousness of the comparison at

short forecast times. Since the analysis depends on short term forecasts, covariances

between analyses and forecasts at short time ranges can reduce the estimated error

variance. At long forecast times where covariances approach zero, differences in the
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8 N. C. PRIVÉ

variance of the NR fields and the variance of the GEOS-5 forecast fields will affect the

accuracy of the analysis verification method.

Figure 3 shows the ratio of the analysis-verified forecast error variances to the true

forecast error variances for days 1 to 5 of the forecast. The 506 hPa temperature error

variance calculated by analysis verification is underestimated at 24 hours, but close to the

true error variance for large and synoptic scales at the 48 hour forecast and beyond. At

high wavenumbers, the analysis-verification method significantly overestimates the

temperature error variance. For 857 hPa specific humidity, the forecast error is severely

underestimated at 24 hours, with analysis-verified error variance only 25-50% of the true

variance. The analysis-verified error variance still underestimates the true variance for low

wavenumbers at 5 days; at this scale, the NR and forecast model have similar variances of

humidity, so the underestimation at 120 hours is due to positive covariances between the

analyses and forecasts. In contrast to the temperature field, the analysis has lower variance

of q at high wavenumbers, resulting in saturation of analysis-verified error variance that is

too low at high wavenumbers.

Synoptic and large-scale error variances are significantly underestimated in the

analysis-verified error calculation of 300 hPa rotational wind for forecasts of less than 72

hours, with the greatest discrepancy at low wavenumbers. The analysis-verified forecast

overestimates error variance at high wavenumbers after the 24 hour forecast period, and

overestimates the wavenumber one error variance after 96 hours. At long time scales, these

overestimations are due to greater error variance at high wavenumbers in the analysis field

compared to the NR – there is up to 45% greater variance at high wavenumbers in the

analysis, and 10% greater variance at very low wavenumbers. This is consistent with the

strong damping of high wavenumbers seen in the NR climatology (Errico and Privé, 2013).

The difference between forecast errors verified with respect to analysis or truth

profoundly affects error growth estimated by the two verifications. Figure 4 compares the

true 24 hour error growth (dashed lines) as a function of wavenumber with the estimated

rate of error growth using the analysis field to verify the forecasts (solid lines). The error

growth from 24 to 48 hours, and the growth from 48 to 72 hours are illustrated for 506 hPa

temperature, 857 hPa specific humidity, and 300 hPa rotational wind.

In all cases, the estimated analysis verification significantly overestimates the

magnitude of 24-48 hour error growth, and also mis-characterizes the spectral distribution

of error growth. For temperature and humidity, the peak analysis-verified error growth
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ERROR SPECTRA IN AN OSSE 9

occurs between wavenumbers 50-80, while the actual peak error growth occurs from

wavenumbers 8-12 for temperature and wavenumbers 30-50 for q. For rotational wind, the

analysis-verified error growth has three peaks, near wavenumbers 2-3, 10-15, and 60-80,

while the true error growth has a single peak near wavenumber 10. The largest

overestimates of wind error growth occur at very low wavenumbers, and from wavenumbers

70-90. The greatest discrepancies in error growth occur at those wavenumbers for which

the analysis-verified error estimates (Figure 3) have the most severe underestimation of

true error at the 24 hour forecast time. The magnitude of overestimation is on the order of

200% at peak overestimation for temperature and humidity error growth, and 300%

overestimation at low wavenumbers for wind error growth.

For the 48 to 72 hour forecast period, the error growth rate estimated by analysis

verification is much closer to the true error growth rate, with only a small overestimation

for temperature and wind, and somewhat greater overestimation for humidity

(approximately 140%). For the 72 to 96 hour forecast period (not shown), the analysis

verification method of estimating error growth is very accurate, with overestimation of

error growth on the order of 110-120% occurring primarily at wavenumber one.

3.3 Correlations

Correlations between the analysis and verifying forecast fields are commonly used as a

measure of forecast skill, such as anomaly correlation. It is of interest to determine if

different behavior is seen for forecast correlations at various spectral scales. Spatial

correlations between the temporal anomalies of the forecast and NR fields (labeled as C,

and N , respectively) are calculated for low (1-7), synoptic (8-20) and high (21-287)

wavenumber anomalies as follows

r =
E[(C − μC)(N − μN)]

σCσNR

(1)

where E is the area and time weighted mean, and μ and σ are respectively the areal mean

and standard deviations of the Control and NR fields. The correlations for 356 hPa wind

and 506 hPa temperature are shown in Figure 5 as a function of latitude for the

progression of the forecast out to 336 hours.

At the analysis time, the lowest correlations are found in the tropics, particularly for

high wavenumber anomalies, with correlations near one in the extratropics. The

correlations steadily decrease as the forecast progresses. For high wavenumber anomalies,
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10 N. C. PRIVÉ

the correlations approach zero by forecast hour 240 for both temperature and wind. After

hour 48, a local maximum in correlation between 20S-30S emerges, while a rapid decline in

correlation occurs between 40S-60S from 48 to 72 hours. The subtropical correlation peak

is coincident with the subsidence region of the Hadley circulation, where convection is

suppressed. At synoptic scales, the correlations approach zero by hour 336 near the poles,

but remain positive between 60S to 60N. As for the high wavenumbers, a peak in

correlations develops near 20S, especially for wind, that persists through the first seven

forecast days.

While wind and temperature correlations show similar overall behavior at high and

synoptic wavenumbers, at low wavenumbers the behavior is quite different for the two

fields. For winds, the most rapid decline in correlation occurs in the Northern Hemisphere

polar region, with near zero correlation by hour 240, with the slowest decline in correlation

near 90S. For temperature, the slowest decline in correlation occurs near 90N, with

correlations at hour 336 between 0.7 and 0.8. The fastest decline in correlation occurs near

90S, with correlation near zero at hour 336. The very high correlations in the Northern

Hemisphere extratropics for low wavenumbers were unexpected, and may be due to slowly

varying large scale synoptic patterns in the summer months.

3.4 Growth Rates

Prior efforts by Leith (1978), Lorenz (1982), Dalcher and Kalnay (1987), and Simmons and

Hollingsworth (2002), among others, have attempted to apply simple functional forms to

the growth of forecast errors. The error growth function used by Dalcher and Kalnay

(1987) was

dE

dt
= γ + αE − βE2 (2)

where the change in error variance E with time t includes a linear model error term γ, an

exponential growth term αE, and saturation of the error in the extended forecast. In the

current study, error growth during the early forecast period is of particular interest in

comparison to previous work.

The evolution of the error variances is calculated for the Northern Hemisphere

extratropics (NHEX, 30N-60N), Southern Hemisphere extratropics (SHEX, 30S-60S), and

tropics (20N-20S). Figure 6 shows the error variance as a function of forecast time for

temperature, specific humidity, and zonal wind for low (thick line), synoptic (dashed line),
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and high (thin line) wavenumber bands as previously defined. It is immediately apparent

from Figure 6 that the error growth is often more complicated than the simple functional

form of (2).

The high wavenumber error growth in the extratropics most closely follows the form of

(2), with a period of smooth exponential error growth during the early forecast, followed

by saturation after approximately day 7. The high wavenumber error growth in the tropics

has only modest increase between the error variance at the initial time and the saturation

error variance. Specific humidity in the tropics has a noticeable diurnal cycle for high

wavenumber errors, likely due to the geographic distribution of convection. High

wavenumber errors dominate at all forecast times for specific humidity, and during the first

few forecast days for temperature and wind in all regions.

Synoptic scale error growth is more complex than high wavenumber error growth,

particularly in the tropics. For wind and temperature, the synoptic scale errors appear

almost saturated by day 14 and are the dominant error type in the extended forecast.

During the early forecast period, error increases more rapidly than exponential growth for

extratropical wind, similar to that seen for high wavenumber error growth. In contrast, in

the tropics, temperature and specific humidity have initial rapid error growth during the

first day, but slower error growth after 24 hours. Specific humidity in the Southern

Hemisphere has exponential error growth during the early forecast, but in the Northern

Hemisphere the humidity error growth has similar behavior to the tropics.

The large scale error growth is also far from simple. The large scale errors are not

saturated at the end of the two week forecast. In the Southern Hemisphere extratropics,

wind and temperature errors exhibit slow error growth during the first day, followed by

exponential error growth during the early forecast period, and then a gradual deceleration

in growth as errors begin to approach saturation. Wind in the Northern Hemisphere

extratropics and tropics follow a similar progression of error growth to that in the

Southern Hemisphere extratropics. Temperature in the tropics and Northern Hemisphere

extratropics have rapid error growth during the first day, followed by exponential error

growth and then a gradual asymptote toward saturation. Specific humidity has an

exaggerated pause of growth in the Northern Hemisphere extratropics and tropics, with

the tropics actually showing a decline in error variance from day 2 to 4, followed by

exponential error growth prior to saturation.
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12 N. C. PRIVÉ

3.5 Perturbation Experiment

An additional experiment, designated Perturb, is performed to further investigate error

growth during the early forecast period. When generating the synthetic observations,

random number generators are used to create the observation error with different seeds

used for each observation type and time. In the Perturb case, the seeds used to generate

these observation errors are changed, so that the observation errors are different while

retaining the statistical properties of the calibrated observations from the Control case.

The Perturb case is cycled from 21 June 2011 to 5 September 2011, with 120 hour

forecasts launched once daily at 0000 UTC. This case can be considered as a separate

realization of the analysis and forecast cycle in comparison to the Control case.

The Control and Perturb fields can be compared pairwise for forecasts initialized at the

same date and time. Direct comparison of the two forecast fields illustrates the growth of

initial condition errors in the absence of model error. The variance of the difference

between the Control (C) and the Perturb (P ) cases can be written as

var(C − P ) = var(C) + var(P )− 2cov(C, P ) (3)

where cov is the covariance between C and P . The variance of the difference between the

Control and Perturb cases is shown in Figure 7.

The growth of forecast differences in Figure 7 is less complex than the growth of

forecast errors, with behavior closer to the simplified form described by (2). This implies

that model error may be the source of some of the complex growth patterns seen in Figure

6. There are some interesting features in the difference growth behavior, particularly in the

initial forecast period, where the variance of forecast differences sometimes shows a slight

dip in growth during the first day of the forecast, most notably for large-scale differences of

temperature in the extratropics. This dip could have several possible causes, including an

initial decrease in the variance of the fields in either case, or by the fields in the two cases

initially becoming more alike.

The variances and covariances of the Control and Perturb fields are shown in Figure 8.

A wide variety of behaviors are seen, including increasing, decreasing, and constant

variances with forecast time. There is no consistent behavior that would suggest that the

initial dip in forecast difference variances is caused by decreases in both or either

corresponding forecast fields. The correlation of the Control and Perturb fields (Figure 9)

features a very slight increase in correlations from the analysis state to the 12 hour forecast
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for all scales of NHEX temperatures and large and syntopic scales of SHEX temperatures,

indicating that the fields become more alike during the very early forecast period – these

are the forecast difference fields that showed a pronounced dip in the early forecast.

However, other variables exhibit monotonically decreasing correlations during the early

forecast period.

The behavior of the forecast differences is further explored by calculating the

correlation of the error fields. The forecast errors verified against the Nature Run, N , are

defined as

C̃ = C −N (4)

P̃ = P −N (5)

Then the covariance of the forecast errors may be written as

cov(C̃, P̃ ) = cov(C, P ) + var(N)− cov(C,N)− cov(P,N) (6)

The correlation r between the errors of the two realizations is likewise

r(C̃, P̃ ) =
cov(C̃, P̃ )√

var(C̃)
√

var(P̃ )
(7)

r(C̃, P̃ ) =
cov(C, P ) + var(N)− cov(C,N)− cov(P,N)√

var(C̃)
√

var(P̃ )
(8)

As seen in Figure 10, the greatest increases in r(C̃, P̃ ) occur during the first day of the

forecast, these correlations continue to increase for up to three days, after which they begin

to decrease. The weakest and earliest peak in correlation is seen for humidity in the SHEX

region, with the latest peak correlations occurring for wind, and the most exaggerated

peak seen for temperature in the NHEX region. It is notable that the increase in forecast

error correlations occurs not just for larger scales, but also for the high wavenumber errors.

This pronounced increase in error correlations, not seen in the correlation of the fields in

Figure 9, indicates that the difference between the forecasts and the NR grows much more

quickly than the differences between the paired experimental forecasts.

As the forecast time tF increases, cov(C, P ), cov(C,N), cov(P,N) are all expected to

decrease and approach zero. var(N) may be approximated as constant as tF increases, and
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14 N. C. PRIVÉ

var(C) ≈ var(P ). Thus,

lim
tF→∞

cov(C̃, P̃ ) = var(N) (9)

lim
tF→∞

r(C̃, P̃ ) =
var(N)√

var(C̃)
√

var(P̃ )
(10)

If the variance of the free-running forecast model is similar to the variance of the Nature

Run, then

lim
tF→∞

var(C) = var(N) (11)

lim
tF→∞

var(C̃) = 2var(N) (12)

lim
tF→∞

r(C̃, P̃ ) =
var(N)

2var(N)
=

1

2
(13)

The only correlations that appear to asymptote prior to 120 hours are the high

wavenumber correlations in the tropics, although a forecast longer than 14 days may be

needed to determine the ultimate correlation. The correlation of tropical temperature and

winds for high wavenumbers asymptote to values close to 0.5, while specific humidity

correlations asymptote to a value near 0.7. The NR has greater variances of specific

humidity compared to the experimental forecasts for wavenumbers higher than 10, while

the NR has smaller variances of temperature compared to experimental forecasts for

wavenumbers higher than 20.

4 Discussion

Although previously published error spectra have most frequently been calculated for

geopotential height or kinetic energy, a comparison between prior studies can be made

with the current results. For wind and temperature, mesoscale and smaller scale errors

initially dominate, but after 3-6 days, synoptic scale errors become prominent. High

wavenumber errors remain dominant for specific humidity throughout the extended

forecast, likely due to small scale convective processes. Boer (2003) calculated the mean

and transient error spectra of 506 hPa geopotential height for the Canadian Meteorological

Centre operational Global Environmental Multiscale model, and found a progression of

error spectra for the first six forecast days that is qualitatively similar to the error spectra

in Figure 1, including rapid saturation at high wavenumbers and a shift of spectral peak

toward lower wavenumbers as the forecasts progress.

The slope of the saturated error spectra of wind and temperature in the mid and upper
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troposphere from wavenumbers 20 to 200 is approximately -3 as shown in Section 3.1,

indicative of quasi-geostrophic two-dimensional turbulence (Charney, 1971). The slopes of

the power spectra of errors are expected to be equal to the slopes of the full fields once the

errors have saturated. Observations of wind and temperature (Nastrom and Gage, 1985)

demonstrate a transition from a spectral slope of -3 at lower wavenumbers to -5/3 at

higher wavenumbers. This transition is not seen here, as the spectral slope becomes

increasingly negative at very high wavenumbers due to model damping. On the other

hand, the spectra of specific humidity has a slope of -5/3 over wavenumbers 20-200 before

transitioning to a steeper slope at very high wavenumbers, possibly indicating the

dominance of mesoscale activity.

The growth rate of forecast errors has been the subject of numerous studies, as

described in Section 3.4. The classic portrayal of error growth is one of exponential growth

during the early forecast period with a gradual asymptote towards a saturation value at

the extended forecast (Leith, 1978). This behavior is most clearly seen in these results for

high wavenumber forecast errors, but more complicated error growth is observed for low

and synoptic wavenumber errors, particularly in the tropics and for specific humidity,

where rapid error growth during the first 48 hours is followed by a period of much weaker

error growth (or even a decrease in error variance). The initial surge in error variance of

temperature and humidity in some regions may be due to physical processes in the model

that react to imbalances in the initial state or to an analysis field that differs significantly

from the preferred climatology of the model Reynolds et al. (1994). This surge is strongest

in the tropics and summer hemisphere, where convection plays a stronger role than in the

winter extratropics. The initial slow error growth of wind globally, as well as Southern

Hemisphere temperature error growth, may be due to the dampening of those initial

condition errors that project onto decaying modes.

In practice, some form of self-verification is often used to calculate forecast error,

generally by using the analysis field as the ‘truth’. In the OSSE framework, the existence

of the NR allows the explicit calculation of analysis and forecast error, and these different

methods of verification have been compared in Section 3.2. Overall, the self-verification

using the analysis field as truth significantly underestimates the true forecast errors during

the early forecast period. For wind, the analysis-verified forecast errors approach the true

errors after 48 hours, with the temperature analysis-verified forecast error rapidly

approaching the true magnitudes by 48 hours. Specific humidity analysis-verified errors are
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slower to improve, with some underestimation remaining at 120 hours. At high

wavenumbers, differences in the climatologies of field variances dominate the discrepancies

in analysis-verified errors after the 24 hour forecast. Because of this considerable

underestimation by analysis-verified error, the early forecast period growth rates are

significantly overestimated. These findings indicate that caution is warranted when

analysis-verification is used to quantify errors during the early forecast period.

One aspect of the analysis-verified errors worth noting is that the discrepancy in the

wind error growth during the early forecast period was greatest at large scales, while

temperature and humidity have the greatest discrepancy in error growth at high

wavenumbers. Presently, no explanation of this result is offered.

The correlations between the forecast and NR fields decrease monotonically with

forecast time, as expected. The weakest initial correlations occur for small scale features,

particularly in the tropics where convective processes dominate at these scales.

Correlations of high wavenumber anomalies decline quickly, reaching near zero values by

the latter period of the extended forecast, corresponding to the saturation of errors at

these wavenumbers.

The correlations of analysis and forecast errors between the Control and Perturb cases

exhibit different behavior than the correlations of the actual Control and Perturb fields.

There is generally an initial increase in correlation of the two error fields before the

correlations begin to decline into the medium range forecast. This indicates that during

the initial period, error grows preferentially in certain locations, and with the same sign in

both forecasts; or conversely, random, uncorrelated errors that differ between the two

experiments may be damped. After this initial period, the two forecasts have diverged

sufficiently that preferential error growth no longer occurs in the same regions and/or

differs in sign, and the correlation between error field declines. Peak error correlations

occur earlier in the forecast for temperature and specific humidity, with peaks at 1-2 days,

compared with peak at 2-4 days for wind. However, aside from temperature in the

extratropics, the correlations of the full fields of the two experiments do not increase in the

early forecast period. This implies that the NR fields diverge from the experimental

forecasts much more rapidly than the paired forecasts diverge from each other.

The results of these experiments are generally in agreement with prior studies (ex.

Boer, 1994; Reynolds et al., 1994; Boer, 2003; Simmons and Hollingsworth, 2002),

particularly for the medium to extended forecast range. Model error is found to have a
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significant impact on the early forecast period, resulting in error growth that does not

follow the theoretical framework laid out by (Leith, 1978), Dalcher and Kalnay (1987), and

others. The accuracy of self-analysis verification for estimating forecast errors is

significantly impacted by the incestuousness of the comparison for the first two to three

days of the forecast.

The primary caveat with OSSE studies is applicability of the experiments to the real

world, since the OSSE context is a simulation. The results are best considered qualitatively

rather than quantitatively. There are known deficiencies of certain aspects of the OSSE; for

example, the NR does not have realistic variance at high wavenumbers, presumably due to

unrealistic damping. Thus, error variances for wavenumbers above 100 do not display

realistic behaviors in the OSSE. Also, forecast skills in the OSSE have been found to be

somewhat higher than real forecasts, implying that model error may be insufficient in the

OSSE, and that forecast errors in the real world have greater magnitude.
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Figure 1. Spectra of error variance of Control case, verified against NR over the July-August period. Each thin curve represents
one forecast time at 24 hour intervals from the analysis to the 336 hour forecast; thin dashed curve indicates analysis error
variance. Heavy curve indicates estimated saturated error variance. Top, 506 hPa temperature, K2; center, 857 hPa specific
humidity, kg2kg−2; bottom, 356 hPa rotational wind, m2s−4.
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Figure 2. Ratio of spectra of forecast error variances at the beginning and end of a 24 hour period, verified against NR over
the July-August period. Each curve represents one forecast time interval at 24 hour intervals from the first 24 hours to the
growth between 312 and 336 hours. Top, 506 hPa temperature, K2day−1; center, 857 hPa specific humidity, kg2kg−2day−1;
bottom, 356 hPa rotational wind, m2s−4day−1.

c© 0000 Tellus, 000, 000–000



22 N. C. PRIVÉ
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Figure 3. Ratio of spectra of Control forecast error verified using the analysis to the spectra of forecast error verified using
the NR over the July-August period. Heavy solid line, 24 hour forecast; solid thin line, 48 hour forecast; heavy dashed line, 72
hour forecast; thin dashed line, 96 hour forecast; dash-dot line, 120 hour forecast. Top, 506 hPa temperature; center, 857 hPa
specific humidity; bottom, 356 hPa rotational wind component.
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Figure 4. 24-hour Control forecast error growth rate spectra over the July-August period. Solid lines indicate verification
against analysis, dashed lines indicate verification against NR. Heavy lines indicate growth from 24 to 48 hours; thin lines
indicate growth from 48 to 72 hours. Top, 506 hPa temperature K2day−1; center, 857 hPa specific humidity, kg2kg−2day−1;
bottom, 356 hPa rotational wind, m2s−4day−1.
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Figure 5. Correlation of Control forecast fields with NR fields for various spectral ranges for the July-August period. Thick
lines indicate analysis, thin solid lines show forecasts at 1 day intervals from 1 to 7 days; thin dashed lines show forecasts
from 8 to 14 days. a,b,c) 506 hPa temperatures; d,e,f) 356 hPa zonal wind. a,d) wavenumbers 1-7; b,e) wavenumbers 8-20; c,f)
wavenumbers 21-287.
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Figure 6. Control error variances verified against NR for three regions as a function of forecast time for the July-August
period: 60S-30S (SHEX), 20S-20N (Tropics), and 30N-60N (NHEX). Thick line, low wavenumbers 0-7; dashed line, synoptic
wavenumbers 8-20; thin solid line, high wavenumbers 21-287. Top row, 506 hPa temperature, K2; center row, 857 hPa specific
humidity, kg2kg−2; bottom row, 356 hPa zonal wind, m2s−4.
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Figure 7. Variances of differences between Control and Perturb for three regions as a function of forecast time: 60S-30S
(SHEX), 20S-20N (Tropics), and 30N-60N (NHEX). Thick line, low wavenumbers 0-7; dashed line, synoptic wavenumbers 8-20;
thin solid line, high wavenumbers 21-287. Top row, 506 hPa temperature; center row, 857 hPa specific humidity, kg2kg−2;
bottom row, 356 hPa zonal wind.
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Figure 8. Variance of Control fields (thick solid line), variance of Perturb fields (thin line), and covariance of Control and
Perturb fields (dashed line) for the July-August period: 60S-30S (SHEX), 20S-20N (Tropics), and 30N-60N (NHEX) for low
wavenumbers. Top row, 506 hPa temperature, K2; center row, 857 hPa specific humidity, kg2kg−2; bottom row, 356 hPa zonal
wind, m2s−4.
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Figure 9. Correlations between Control and Perturb forecast fields for three regions as a function of forecast time for the
July-August period: 60S-30S (SHEX), 20S-20N (Tropics), and 30N-60N (NHEX). Thick line, low wavenumbers 0-7; dashed
line, synoptic wavenumbers 8-20; thin solid line, high wavenumbers 21-287. Top row, 506 hPa temperature; center row, 857
hPa specific humidity; bottom row, 356 hPa zonal wind.
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Figure 10. Correlations between Control forecast errors and Perturb forecast errors for three regions as a function of forecast
time for the July-August period: 60S-30S (SHEX), 20S-20N (Tropics), and 30N-60N (NHEX). Thick line, low wavenumbers
0-7; dashed line, synoptic wavenumbers 8-20; thin solid line, high wavenumbers 21-287. Top row, 506 hPa temperature; center
row, 857 hPa specific humidity; bottom row, 356 hPa zonal wind.
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