35 research outputs found
Climate change and sugarcane expansion increase Hantavirus infection risk
Hantavirus Cardiopulmonary Syndrome (HCPS) is a disease caused by Hantavirus, which is highly virulent for humans. High temperatures and conversion of native vegetation to agriculture, particularly sugarcane cultivation can alter abundance of rodent generalist species that serve as the principal reservoir host for HCPS, but our understanding of the compound effects of land use and climate on HCPS incidence remains limited, particularly in tropical regions. Here we rely on a Bayesian model to fill this research gap and to predict the effects of sugarcane expansion and expected changes in temperature on Hantavirus infection risk in the state of São Paulo, Brazil. The sugarcane expansion scenario was based on historical data between 2000 and 2010 combined with an agro-environment zoning guideline for the sugar and ethanol industry. Future evolution of temperature anomalies was derived using 32 general circulation models from scenarios RCP4.5 and RCP8.5 (Representative greenhouse gases Concentration Pathways adopted by IPCC). Currently, the state of São Paulo has an average Hantavirus risk of 1.3%, with 6% of the 645 municipalities of the state being classified as high risk (HCPS risk ≥ 5%). Our results indicate that sugarcane expansion alone will increase average HCPS risk to 1.5%, placing 20% more people at HCPS risk. Temperature anomalies alone increase HCPS risk even more (1.6% for RCP4.5 and 1.7%, for RCP8.5), and place 31% and 34% more people at risk. Combined sugarcane and temperature increases led to the same predictions as scenarios that only included temperature. Our results demonstrate that climate change effects are likely to be more severe than those from sugarcane expansion. Forecasting disease is critical for the timely and efficient planning of operational control programs that can address the expected effects of sugarcane expansion and climate change on HCPS infection risk. The predicted spatial location of HCPS infection risks obtained here can be used to prioritize management actions and develop educational campaigns
Spatiotemporal Dynamics of Hantavirus Cardiopulmonary Syndrome Transmission Risk in Brazil
Background: Hantavirus disease in humans is rare but frequently lethal in the Neotropics. Several abundant and widely distributed Sigmodontinae rodents are the primary hosts of Orthohantavirus and, in combination with other factors, these rodents can shape hantavirus disease. Here, we assessed the influence of host diversity, climate, social vulnerability and land use change on the risk of hantavirus disease in Brazil over 24 years. Methods: Landscape variables (native forest, forestry, sugarcane, maize and pasture), climate (temperature and precipitation), and host biodiversity (derived through niche models) were used in spatiotemporal models, using the 5570 Brazilian municipalities as units of analysis. Results: Amounts of native forest and sugarcane, combined with temperature, were the most important factors influencing the increase of disease risk. Population at risk (rural workers) and rodent host diversity also had a positive effect on disease risk. Conclusions: Land use change—especially the conversion of native areas to sugarcane fields—can have a significant impact on hantavirus disease risk, likely by promoting the interaction between the people and the infected rodents. Our results demonstrate the importance of understanding the interactions between landscape change, rodent diversity, and hantavirus disease incidence, and suggest that land use policy should consider disease risk. Meanwhile, our risk map can be used to help allocate preventive measures to avoid disease.publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Landscape, environmental and social predictors of Hantavirus risk in SĂŁo Paulo, Brazil
Final data (Number of HPS reported cases, Population at Risk, HDI, Percent of native vegetation, number of fragments, amount of sugarcane, total annual precipitation and annual mean temperature) used in Prist et al. separated for municipality and yea