158 research outputs found
The solid effect of dynamic nuclear polarization in liquids – accounting for <i>g</i>-tensor anisotropy at high magnetic fields
In spite of its name, the solid effect of dynamic nuclear polarization (DNP) is also operative in viscous liquids, where the dipolar interaction between the polarized nuclear spins and the polarizing electrons is not completely averaged out by molecular diffusion on the timescale of the electronic spin–spin relaxation time. Under such slow-motional conditions, it is likely that the tumbling of the polarizing agent is similarly too slow to efficiently average the anisotropies of its magnetic tensors on the timescale of the electronic T2. Here we extend our previous analysis of the solid effect in liquids to account for the effect of g-tensor anisotropy at high magnetic fields. Building directly on the mathematical treatment of slow tumbling in electron spin resonance (Freed et al., 1971), we calculate solid-effect DNP enhancements in the presence of both translational diffusion of the liquid molecules and rotational diffusion of the polarizing agent. To illustrate the formalism, we analyze high-field (9.4 T) DNP enhancement profiles from nitroxide-labeled lipids in fluid lipid bilayers. By properly accounting for power broadening and motional broadening, we successfully decompose the measured DNP enhancements into their separate contributions from the solid and Overhauser effects.</p
Temperature Dependence of the Proton Overhauser DNP Enhancements on Aqueous Solutions of Fremy's Salt Measured in a Magnetic Field of 9.2 T
The temperature dependence of the water-proton dynamic nuclear polarization (DNP) enhancement from Fremy's salt nitroxide radicals was measured in a magnetic field of 9.2 T (corresponding to 260 GHz microwave (MW) and 392 MHz NMR frequencies) in the temperature range of 15-65 °C. The temperature could be determined directly from the proton NMR line shift of the sample. Very high DNP enhancements of -38 (signal integral) or -81 (peak intensity) could be achieved with a high-power gyrotron MW source. The experimental findings are compared with classical Overhauser theory for liquids, which is based on the translational and rotational motion of the molecules and with molecular dynamics calculations of the coupling factor. © 2012 Springer-Verlag
Dynamic nuclear polarization at high magnetic fields in liquids
High field dynamic nuclear polarization spectrometer for liquid samples have
been constructed. â–º The field dependence of the Overhauser DNP efficiency has
been measured for the first time up to 9.2 T. â–º High DNP enhancements for
liquid samples have been observed at high magnetic fields. â–º The enhancements
have been compared with results from NMRD, MD and theoretical models. â–º
Coherent and relaxation effects within fast magnetic field changes have been
analyzed
High field dynamic nuclear polarization—the renaissance
Sensitivity is a critical issue in NMR spectroscopy, microscopy and imaging, and the factor that often limits the success of various applications. The origin of low sensitivity in NMR is well known to be due to the small magnetic moment of nuclear spins, which yields small Boltzmann polarizations and weak absorption signals. Historically, each advance in technology and methodology that has increased the signal-to-noise in NMR has shifted the boundary of what is achievable, often opening new areas of application and directions of research. The archetypal example of this phenomenon was the introduction of Fourier transform spectroscopy which led to increases of ~10[superscript 2]-fold in signal-to-noise, revolutionizing NMR and many other forms of spectroscopy. More recent technological developments of note include the continuing development of higher field superconducting magnets which increases polarization, and cryoprobes in which the excitation/detection coil is maintained at low temperatures increasing sensitivity through a higher probe Q and decreasing receiver noise. In addition, innovations in NMR methodology have improved sensitivity, classic examples being Hartmann–Hahn cross polarization, and J-coupling meditated transfer methods, and the introduction of 1H detection of [superscript 13]C/[superscript 15]N resonances. Furthermore, techniques for non-inductive detection of resonance, such as the AFM-based technique of magnetic resonance force microscopy (MRFM), have recently allowed observation of a single electron spin, and ~100 nuclear spins/√Hz[superscript 8]
Efficient determination of the accessible conformation space of multi-domain complexes based on EPR PELDOR data
Many proteins can adopt multiple conformations which are important for their function. This is also true for proteins and domains that are covalently linked to each other. One important example is ubiquitin, which can form chains of different conformations depending on which of its lysine side chains is used to form an isopeptide bond with the C-terminus of another ubiquitin molecule. Similarly, ubiquitin gets covalently attached to active-site residues of E2 ubiquitin-conjugating enzymes. Due to weak interactions between ubiquitin and its interaction partners, these covalent complexes adopt multiple conformations. Understanding the function of these complexes requires the characterization of the entire accessible conformation space and its modulation by interaction partners. Long-range (1.8-10Â nm) distance restraints obtained by EPR spectroscopy in the form of probability distributions are ideally suited for this task as not only the mean distance but also information about the conformation dynamics is encoded in the experimental data. Here we describe a computational method that we have developed based on well-established structure determination software using NMR restraints to calculate the accessible conformation space using PELDOR/DEER data
Federating structural models and data:Outcomes from a workshop on archiving integrative structures
Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here
Allosteric activation of an ion channel triggered by modification of mechanosensitive nano-pockets
Lipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel. We restrict lipid-chain access to the nano-pockets by mutagenesis and sulfhydryl modification, and monitor channel conformation by PELDOR/DEER spectroscopy. For a single site located at the entrance of the nano-pockets and distal to the channel pore we generate an allosteric response in the absence of tension. Single-channel recordings reveal a significant decrease in the pressure activation threshold of the modified channel and a sub-conducting state in the absence of applied tension. Threshold is restored to wild-type levels upon reduction of the sulfhydryl modification. The modification associated with the conformational change restricts lipid access to the nano-pocket, interrupting the contact between the membrane and the channel that mediates mechanosensitivity
- …