444 research outputs found

    Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines

    Get PDF
    Image processing pipelines combine the challenges of stencil computations and stream programs. They are composed of large graphs of different stencil stages, as well as complex reductions, and stages with global or data-dependent access patterns. Because of their complex structure, the performance difference between a naive implementation of a pipeline and an optimized one is often an order of magnitude. Efficient implementations require optimization of both parallelism and locality, but due to the nature of stencils, there is a fundamental tension between parallelism, locality, and introducing redundant recomputation of shared values. We present a systematic model of the tradeoff space fundamental to stencil pipelines, a schedule representation which describes concrete points in this space for each stage in an image processing pipeline, and an optimizing compiler for the Halide image processing language that synthesizes high performance implementations from a Halide algorithm and a schedule. Combining this compiler with stochastic search over the space of schedules enables terse, composable programs to achieve state-of-the-art performance on a wide range of real image processing pipelines, and across different hardware architectures, including multicores with SIMD, and heterogeneous CPU+GPU execution. From simple Halide programs written in a few hours, we demonstrate performance up to 5x faster than hand-tuned C, intrinsics, and CUDA implementations optimized by experts over weeks or months, for image processing applications beyond the reach of past automatic compilers.United States. Dept. of Energy (Award DE-SC0005288)National Science Foundation (U.S.) (Grant 0964004)Intel CorporationCognex CorporationAdobe System

    Molecular details of quinolone–DNA interactions: solution structure of an unusually stable DNA duplex with covalently linked nalidixic acid residues and non-covalent complexes derived from it

    Get PDF
    Quinolones are antibacterial drugs that are thought to bind preferentially to disturbed regions of DNA. They do not fall into the classical categories of intercalators, groove binders or electrostatic binders to the backbone. We solved the 3D structure of the DNA duplex (ACGCGU-NA)(2), where NA denotes a nalidixic acid residue covalently linked to the 2′-position of 2′-amino-2′-deoxyuridine, by NMR and restrained torsion angle molecular dynamics (MD). In the complex, the quinolones stack on G:C base pairs of the core tetramer and disrupt the terminal A:U base pair. The displaced dA residues can stack on the quinolones, while the uracil rings bind in the minor groove. The duplex-bridging interactions of the drugs and the contacts of the displaced nucleotides explain the high UV-melting temperature for d(ACGCGU-NA)(2) of up to 53°C. Further, non-covalently linked complexes between quinolones and DNA of the sequence ACGCGT can be generated via MD using constraints obtained for d(ACGCGU-NA)(2). This is demonstrated for unconjugated nalidixic acid and its 6-fluoro derivative. The well-ordered and tightly packed structures thus obtained are compatible with a published model for the quinolone–DNA complex in the active site of gyrases

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasma resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT) induced rapid cell death (pyroptosis). We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1β/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages

    Primary malignant melanoma of the stomach: report of a case

    Get PDF
    We report a case of primary malignant melanoma (MM) of the stomach. The patient, a 73-year-old man, was referred to our hospital for investigation of an elevated lesion in the stomach, detected by gastroscopy. On admission, physical examinations and laboratory data were unremarkable. Gastroscopy revealed a pigmented, elevated tumor, approximately 2 cm in diameter, in the posterior wall of the stomach. A biopsy was taken, which resulted in a diagnosis of MM, based on the presence of melanin in tumor cells. F-18 fluorodeoxyglucose positron emission tomography showed no accumulation of tracer except for the tumor in the stomach, indicating that it was a primary MM of the stomach. The patient underwent distal gastrectomy, but died of recurrence 1 year later. Very few cases of primary MM of the stomach have been reported. Thus, we report this case, followed by a review of the literature

    Conserved principles of mammalian transcriptional regulation revealed by RNA half-life

    Get PDF
    RNA levels in a cell are regulated by the relative rates of RNA synthesis and decay. We recently developed a new approach for measuring both RNA synthesis and decay in a single experimental setting by biosynthetic labeling of newly transcribed RNA. Here, we show that this provides measurements of RNA half-lives from microarray data with a so far unreached accuracy. Based on such measurements of RNA half-lives for human B-cells and mouse fibroblasts, we identified conserved regulatory principles for a large number of biological processes. We show that different regulatory patterns between functionally similar proteins are characterized by differences in the half-life of the corresponding transcripts and can be identified by measuring RNA half-life. We identify more than 100 protein families which show such differential regulatory patterns in both species. Additionally, we provide strong evidence that the activity of protein complexes consisting of subunits with overall long transcript half-lives can be regulated by transcriptional regulation of individual key subunits with short-lived transcripts. Based on this observation, we predict more than 100 key regulatory subunits for human complexes of which 28% could be confirmed in mice (P < 10−9). Therefore, this atlas of transcript half-lives provides new fundamental insights into many cellular processes

    Genetic and Functional Assessment of the Role of the rs13431652-A and rs573225-A Alleles in the G6PC2 Promoter That Are Strongly Associated With Elevated Fasting Glucose Levels

    Get PDF
    OBJECTIVE Genome-wide association studies have identified a single nucleotide polymorphism (SNP), rs560887, located in a G6PC2 intron that is highly correlated with variations in fasting plasma glucose (FPG). G6PC2 encodes an islet-specific glucose-6-phosphatase catalytic subunit. This study examines the contribution of two G6PC2 promoter SNPs, rs13431652 and rs573225, to the association signal. RESEARCH DESIGN AND METHODS We genotyped 9,532 normal FPG participants (FPG <6.1 mmol/l) for three G6PC2 SNPs, rs13431652 (distal promoter), rs573225 (proximal promoter), rs560887 (3rd intron). We used regression analyses adjusted for age, sex, and BMI to assess the association with FPG and haplotype analyses to assess comparative SNP contributions. Fusion gene and gel retardation analyses characterized the effect of rs13431652 and rs573225 on G6PC2 promoter activity and transcription factor binding. RESULTS Genetic analyses provide evidence for a strong contribution of the promoter SNPs to FPG variability at the G6PC2 locus (rs13431652: β = 0.075, P = 3.6 × 10−35; rs573225 β = 0.073 P = 3.6 × 10−34), in addition to rs560887 (β = 0.071, P = 1.2 × 10−31). The rs13431652-A and rs573225-A alleles promote increased NF-Y and Foxa2 binding, respectively. The rs13431652-A allele is associated with increased FPG and elevated promoter activity, consistent with the function of G6PC2 in pancreatic islets. In contrast, the rs573225-A allele is associated with elevated FPG but reduced promoter activity. CONCLUSIONS Genetic and in situ functional data support a potential role for rs13431652, but not rs573225, as a causative SNP linking G6PC2 to variations in FPG, though a causative role for rs573225 in vivo cannot be ruled out
    corecore