1,641 research outputs found

    Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Get PDF
    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance

    Solar Physics - Plasma Physics Workshop

    Get PDF
    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments

    3D MHD modeling of twisted coronal loops

    Get PDF
    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube, in the solar atmosphere extending from the high-beta chromosphere to the low-betacorona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ~30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the fluxtube is heated to active region temperatures (~3 MK) after ~2/3 hr. Upflows from the chromosphere up to ~100 km/s fill the core of the fluxtube to densities above 109 cm-3. More heating is released in the low corona than the high corona and is finely structured both in space and time.Publisher PDFPeer reviewe

    Inconsistent boundaries

    Get PDF
    Research on this paper was supported by a grant from the Marsden Fund, Royal Society of New Zealand.Mereotopology is a theory of connected parts. The existence of boundaries, as parts of everyday objects, is basic to any such theory; but in classical mereotopology, there is a problem: if boundaries exist, then either distinct entities cannot be in contact, or else space is not topologically connected (Varzi in Noûs 31:26–58, 1997). In this paper we urge that this problem can be met with a paraconsistent mereotopology, and sketch the details of one such approach. The resulting theory focuses attention on the role of empty parts, in delivering a balanced and bounded metaphysics of naive space.PostprintPeer reviewe

    Redesign and initial validation of an instrument to assess the motivational qualities of music in exercise: The Brunel Music Rating Inventory-2

    Get PDF
    In the present study, a measure to assess the motivational qualities of music in exercise was redesigned, extending previous research efforts (Karageorghis et al., 1999). The original measure, the Brunel Music Rating Inventory (BMRI), had shown limitations in its factor structure and its applicability to non-experts in music selection. Redesign of the BMRI used in-depth interviews with eight participants (mean age 31.9 years, s¼8.9 years) to establish the initial item pool, which was examined using a series of confirmatory factor analyses. A single-factor model provided a good fit across three musical selections with different motivational qualities (comparative fit index, CFI: 0.95 – 0.98; standardized root mean residual, SRMR: 0.03 – 0.05). The single-factor model also demonstrated acceptable fit across two independent samples and both sexes using one piece of music (CFI: 0.86 – 1.00; SRMR: 0.04 – 0.07). The BMRI was designed for experts in selecting music for exercise (e.g. dance aerobic instructors), whereas the BMRI-2 can be used both by exercise instructors and participants. The psychometric properties of the BMRI-2 are stronger than those of the BMRI and it is easier to use. The BMRI-2 provides a valid and internally consistent tool by which music can be selected to accompany a bout of exercise or a training session. Furthermore, the BMRI-2 enables researchers to standardize music in experimental protocols involving exercise-related tasks

    Thermal Mechanisms of Millimeter Wave Stimulation of Excitable Cells

    Get PDF
    Interactions between millimeter waves (MMWs) and biological systems have received increasing attention due to the growing use of MMW radiation in technologies ranging from experimental medical devices to telecommunications and airport security. Studies have shown that MMW exposure alters cellular function, especially in neurons and muscles. However, the biophysical mechanisms underlying such effects are still poorly understood. Due to the high aqueous absorbance of MMW, thermal mechanisms are likely. However, nonthermal mechanisms based on resonance effects have also been postulated. We studied MMW stimulation in a simplified preparation comprising Xenopus laevis oocytes expressing proteins that underlie membrane excitability. Using electrophysiological recordings simultaneously with 60 GHz stimulation, we observed changes in the kinetics and activity levels of voltage-gated potassium and sodium channels and a sodium-potassium pump that are consistent with a thermal mechanism. Furthermore, we showed that MMW stimulation significantly increased the action potential firing rate in oocytes coexpressing voltage-gated sodium and potassium channels, as predicted by thermal terms in the Hodgkin-Huxley model of neurons. Our results suggest that MMW stimulation produces significant thermally mediated effects on excitable cells via basic thermodynamic mechanisms that must be taken into account in the study and use of MMW radiation in biological systems

    Lagrangian analysis of alignment dynamics for isentropic compressible magnetohydrodynamics

    Full text link
    After a review of the isentropic compressible magnetohydrodynamics (ICMHD) equations, a quaternionic framework for studying the alignment dynamics of a general fluid flow is explained and applied to the ICMHD equations.Comment: 12 pages, 2 figures, submitted to a Focus Issue of New Journal of Physics on "Magnetohydrodynamics and the Dynamo Problem" J-F Pinton, A Pouquet, E Dormy and S Cowley, editor

    Rapid dissipation of magnetic fields due to Hall current

    Get PDF
    We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium where ion motions can be neglected. In such a medium, the field is frozen into the electrons and Hall currents prevail. Although Hall currents conserve magnetic energy, in the presence of density gradients, they are able to create current sheets which can be the sites for efficient dissipation of magnetic fields. We recover the frequency, ωMH\omega_{MH}, for Hall oscillations modified by the presence of density gradients. We show that these oscillations can lead to the exchange of energy between different components of the field. We calculate the time evolution and show that magnetic fields can dissipate on a timescale of order 1/ωMH1/\omega_{MH}. This mechanism can play an important role for magnetic dissipation in systems with very steep density gradients where the ions are static such as those found in the solid crust of neutron stars.Comment: 9 pages, changed fig.

    Multiparametric MRI for assessment of early response to neoadjuvant sunitinib in renal cell carcinoma

    Get PDF
    Purpose To detect early response to sunitinib treatment in metastatic clear cell renal cancer (mRCC) using multiparametric MRI. Method Participants with mRCC undergoing pre-surgical sunitinib therapy in the prospective NeoSun clinical trial (EudraCtNo: 2005-004502-82) were imaged before starting treatment, and after 12 days of sunitinib therapy using morphological MRI sequences, advanced diffusion-weighted imaging, measurements of R2* (related to hypoxia) and dynamic contrast-enhanced imaging. Following nephrectomy, participants continued treatment and were followed-up with contrast-enhanced CT. Changes in imaging parameters before and after sunitinib were assessed with the non-parametric Wilcoxon signed-rank test and the log-rank test was used to assess effects on survival. Results 12 participants fulfilled the inclusion criteria. After 12 days, the solid and necrotic tumor volumes decreased by 28% and 17%, respectively (p = 0.04). However, tumor-volume reduction did not correlate with progression-free or overall survival (PFS/OS). Sunitinib therapy resulted in a reduction in median solid tumor diffusivity D from 1298x10-6 to 1200x10-6mm2/ s (p = 0.03); a larger decrease was associated with a better RECIST response (p = 0.02) and longer PFS (p = 0.03) on the log-rank test. An increase in R2* from 19 to 28s-1 (p = 0.001) was observed, paralleled by a decrease in Ktrans from 0.415 to 0.305min-1 (p = 0.01) and a decrease in perfusion fraction from 0.34 to 0.19 (p<0.001). Conclusions Physiological imaging confirmed efficacy of the anti-angiogenic agent 12 days after initiating therapy and demonstrated response to treatment. The change in diffusivity shortly after starting pre-surgical sunitinib correlated to PFS in mRCC undergoing nephrectomy, however, no parameter predicted OS
    • …
    corecore