433 research outputs found

    On the macroion virial contribution to the osmotic pressure in charge-stabilized colloidal suspensions

    Full text link
    Our interest goes to the different virial contributions to the equation of state of charged colloidal suspensions. Neglect of surface effects in the computation of the colloidal virial term leads to spurious and paradoxical results. This pitfall is one of the several facets of the danger of a naive implementation of the so called One Component Model, where the micro-ionic degrees of freedom are integrated out to only keep in the description the mesoscopic (colloidal) degrees of freedom. On the other hand, due incorporation of wall induced forces dissolves the paradox brought forth in the naive approach, provides a consistent description, and confirms that for salt-free systems, the colloidal contribution to the pressure is dominated by the micro-ionic one. Much emphasis is put on the no salt case but the situation with added electrolyte is also discussed

    Colloidal hard-rod fluids near geometrically structured substrates

    Full text link
    Density functional theory is used to study colloidal hard-rod fluids near an individual right-angled wedge or edge as well as near a hard wall which is periodically patterned with rectangular barriers. The Zwanzig model, in which the orientations of the rods are restricted to three orthogonal orientations but their positions can vary continuously, is analyzed by numerical minimization of the grand potential. Density and orientational order profiles, excess adsorptions, as well as surface and line tensions are determined. The calculations exhibit an enrichment [depletion] of rods lying parallel and close to the corner of the wedge [edge]. For the fluid near the geometrically patterned wall, complete wetting of the wall -- isotropic liquid interface by a nematic film occurs as a two-stage process in which first the nematic phase fills the space between the barriers until an almost planar isotropic -- nematic liquid interface has formed separating the higher-density nematic fluid in the space between the barriers from the lower-density isotropic bulk fluid. In the second stage a nematic film of diverging film thickness develops upon approaching bulk isotropic -- nematic coexistence.Comment: 9 pages, 9 figure

    Density-dependent interactions and structure of charged colloidal dispersions in the weak screening regime

    Get PDF
    We determine the structure of charge-stabilized colloidal suspensions at low ionic strength over an extended range of particle volume fractions using a combination of light and small angle neutron scattering experiments. The variation of the structure factor with concentration is analyzed within a one-component model of a colloidal suspension. We show that the observed structural behavior corresponds to a non-monotonic density dependence of the colloid effective charge and the mean interparticle interaction energy. Our findings are corroborated by similar observations from primitive model computer simulations of salt-free colloidal suspensions.Comment: Revised version, accepted to Phys. Rev. Let

    Testing the relevance of effective interaction potentials between highly charged colloids in suspension

    Full text link
    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behavior, pressure and compressibility of highly charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models

    Colloids in light fields: particle dynamics in random and periodic energy landscapes

    Full text link
    The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, is also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential

    Asociación entre menor susceptibilidad a los antisépticos o desinfectantes y resistencia antibiótica en bacterias

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina. Departamento de Medicina Preventiva y Salud Pública. Fecha de lectura: 24 de Marzo de 201

    Spectral properties of muscle activation during incremental cycling test

    Get PDF
    It is uncertain whether fatigue and workload would affect muscle recruitment during cycling. To infer on changes in priority for recruitment of motor units, we assessed the combined effects of fatigue and workload during an incremental cycling test to exhaustion on frequency components of lower limbs muscle activation. Competitive cyclists performed an incremental maximal cycling test while muscle activations were recorded from the right and left vastus lateralis, biceps femoris and gastrocnemius medialis. Muscle activation signals were assessed using frequency band analyses and decomposed into overall, high and low frequency bands. Combined effects from workload/fatigue were assessed using t tests and Cohen¿s effect sizes (ES). There were increases in the overall muscle activation due to increased workload/fatigue for biceps femoris (40% vs. 90%, p<0.01 and ES = 1.85) and vastus lateralis (40% vs. 70%, p=0.01 and ES = 0.96, and 40% vs. 90%, p<0.01 and ES = 2.03, and 70% vs. 90%, p<0.01 and ES = 0.96), but not for gastrocnemius medialis. There was also greater contribution from low frequency component for biceps femoris (40% vs. 90%, p = 0.01 and ES = 1.12). Similar workload/fatigue effects have been observed between lower limbs. In conclusion, incremental cycling test lead to an increase in activation of main knee joint flexors and extensors but not in plantar flexors during cycling. Biceps femoris changes its recruitment profile due to increases in low frequency content

    Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    Full text link
    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass--charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org/pop

    Subjective caregiver burden and anxiety in informal caregivers: a systematic review and meta-analysis

    Get PDF
    There is increasing evidence that subjective caregiver burden is an important determinant of clinically significant anxiety in family carers. This meta-analysis aims to synthesise this evidence and investigate the relationship between subjective caregiver burden and anxiety symptoms in informal caregivers. We searched PubMed, CINAHL and PsycINFO up to January 2020. Combined estimates were obtained using a random-effects model. After screening of 4,312 articles, 74 studies (with 75 independent samples) were included. There was a large, positive association between subjective caregiver burden and anxiety symptoms (r = 0.51; 95% CI = 0.47, 0.54; I2 = 0.0%). No differences were found in subgroup analyses by type of study design (cross-sectional vs. longitudinal), sampling, control of confounders or care-recipient characteristics. Subjective caregiver burden is an important risk factor for anxiety in informal caregivers. Targeting subjective caregiver burden could be beneficial in preventing clinically significant anxiety for the increasing number of family carers worldwide
    corecore