56 research outputs found
Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients
AbstractAmyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin–myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin–myosin interaction; this in turn might contribute to the pathogenesis of ALS
Out-of-Frame Mutations in ACTN2 Last Exon Cause a Dominant Distal Myopathy With Facial Weakness
Background and Objectives To clinically, genetically, and histopathologically characterize patients presenting with an unusual combination of distal myopathy and facial weakness, without involvement of upper limb or shoulder girdle muscles. Methods Two families with a novel form of actininopathy were identified. Patients had been followed up over 10 years. Their molecular genetic diagnosis was not clear after extensive investigations, including analysis of candidate genes and FSHD1-related D4Z4 repeats. Results Patients shared a similar clinical phenotype and a common pattern of muscle involvement. They presented with a very slowly progressive myopathy involving anterior lower leg and facial muscles. Muscle MRI finding showed complete fat replacement of anterolateral compartment muscles of the lower legs with variable involvement of soleus and gastrocnemius but sparing thigh muscles. Muscle biopsy showed internalized nuclei, myofibrillar disorganization, and rimmed vacuoles. High-throughput sequencing identified in each proband a heterozygous single nucleotide deletion (c.2558del and c.2567del) in the last exon of the ACTN2 gene. The deletions are predicted to lead to a novel but unstructured slightly extended C-terminal amino acid sequence. Discussion Our findings indicate an unusual form of actininopathy with specific molecular and clinical features. Actininopathy should be considered in the differential diagnosis of distal myopathy combined with facial weakness.Peer reviewe
Use, tolerability, benefits and side effects of orthotic devices in Charcot-Marie-Tooth disease
Background: Shoe inserts, orthopaedic shoes, ankle-foot orthoses (AFOs) are important devices in Charcot-Marie-Tooth disease (CMT) management, but data about use, benefits and tolerance are scanty. Methods: We administered to Italian CMT Registry patients an online ad hoc questionnaire investigating use, complications and perceived benefit/tolerability/emotional distress of shoe inserts, orthopaedic shoes, AFOs and other orthoses/aids. Patients were also asked to fill in the Quebec User Evaluation of Satisfaction with assistive Technology questionnaire, rating satisfaction with currently used AFO and related services. Results: We analysed answers from 266 CMT patients. Seventy per cent of subjects were prescribed lower limb orthoses, but 19% did not used them. Overall, 39% of subjects wore shoe inserts, 18% orthopaedic shoes and 23% AFOs. Frequency of abandonment was high: 24% for shoe inserts, 28% for orthopaedic shoes and 31% for AFOs. Complications were reported by 59% of patients and were more frequently related to AFOs (69%). AFO users experienced greater emotional distress and reduced tolerability as compared with shoe inserts (p<0.001) and orthopaedic shoes (p=0.003 and p=0.045, respectively). Disease severity, degree of foot weakness, customisation and timing for customisation were determinant factors in AFOs' tolerability. Quality of professional and follow-up services were perceived issues. Conclusions: The majority of CMT patients is prescribed shoe inserts, orthopaedic shoes and/or AFOs. Although perceived benefits and tolerability are rather good, there is a high rate of complications, potentially inappropriate prescriptions and considerable emotional distress, which reduce the use of AFOs. A rational, patient-oriented and multidisciplinary approach to orthoses prescription must be encouraged
Out-of-Frame Mutations in ACTN2 Last Exon Cause a Dominant Distal Myopathy With Facial Weakness
Background and ObjectivesTo clinically, genetically, and histopathologically characterize patients presenting with an unusual combination of distal myopathy and facial weakness, without involvement of upper limb or shoulder girdle muscles.MethodsTwo families with a novel form of actininopathy were identified. Patients had been followed up over 10 years. Their molecular genetic diagnosis was not clear after extensive investigations, including analysis of candidate genes and FSHD1-related D4Z4 repeats.ResultsPatients shared a similar clinical phenotype and a common pattern of muscle involvement. They presented with a very slowly progressive myopathy involving anterior lower leg and facial muscles. Muscle MRI finding showed complete fat replacement of anterolateral compartment muscles of the lower legs with variable involvement of soleus and gastrocnemius but sparing thigh muscles. Muscle biopsy showed internalized nuclei, myofibrillar disorganization, and rimmed vacuoles. High-throughput sequencing identified in each proband a heterozygous single nucleotide deletion (c.2558del and c.2567del) in the last exon of the ACTN2 gene. The deletions are predicted to lead to a novel but unstructured slightly extended C-terminal amino acid sequence.DiscussionOur findings indicate an unusual form of actininopathy with specific molecular and clinical features. Actininopathy should be considered in the differential diagnosis of distal myopathy combined with facial weakness.</p
The commissioning of the CUORE experiment: the mini-tower run
CUORE is a ton-scale experiment approaching the data taking phase in Gran Sasso National Laboratory. Its primary goal is to search for the neutrinoless double-beta decay in 130Te using 988 crystals of tellurim dioxide. The crystals are operated as bolometers at about 10 mK taking advantage of one of the largest dilution cryostat ever built. Concluded in March 2016, the cryostat commissioning consisted in a sequence of cool down runs each one integrating new parts of the apparatus. The last run was performed with the fully configured cryostat and the thermal load at 4 K reached the impressive mass of about 14 tons. During that run the base temperature of 6.3 mK was reached and maintained for more than 70 days. An array of 8 crystals, called mini-tower, was used to check bolometers operation, readout electronics and DAQ. Results will be presented in terms of cooling power, electronic noise, energy resolution and preliminary background measurements
Results from the Cuore Experiment
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers, each of them made of 52 crystals. The construction of the experiment was completed in August 2016 and the data taking started in spring 2017 after a period of commissioning and tests. In this work we present the neutrinoless double beta decay results of CUORE from examining a total TeO2 exposure of 86.3kg yr, characterized by an effective energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts/ (keV kg yr). In this physics run, CUORE placed a lower limit on the decay half- life of neutrinoless double beta decay of 130Te > 1.3.1025 yr (90% C. L.). Moreover, an analysis of the background of the experiment is presented as well as the measurement of the 130Te 2vo3p decay with a resulting half- life of T2 2. [7.9 :- 0.1 (stat.) :- 0.2 (syst.)] x 10(20) yr which is the most precise measurement of the half- life and compatible with previous results
Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino
detector currently under construction in China. Thanks to the tight
requirements on its optical and radio-purity properties, it will be able to
perform leading measurements detecting terrestrial and astrophysical neutrinos
in a wide energy range from tens of keV to hundreds of MeV. A key requirement
for the success of the experiment is an unprecedented 3% energy resolution,
guaranteed by its large active mass (20 kton) and the use of more than 20,000
20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution
sampling electronics located very close to the PMTs. As the Front-End and
Read-Out electronics is expected to continuously run underwater for 30 years, a
reliable readout acquisition system capable of handling the timestamped data
stream coming from the Large-PMTs and permitting to simultaneously monitor and
operate remotely the inaccessible electronics had to be developed. In this
contribution, the firmware and hardware implementation of the IPbus based
readout protocol will be presented, together with the performances measured on
final modules during the mass production of the electronics
Mass testing of the JUNO experiment 20-inch PMTs readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose,
large size, liquid scintillator experiment under construction in China. JUNO
will perform leading measurements detecting neutrinos from different sources
(reactor, terrestrial and astrophysical neutrinos) covering a wide energy range
(from 200 keV to several GeV). This paper focuses on the design and development
of a test protocol for the 20-inch PMT underwater readout electronics,
performed in parallel to the mass production line. In a time period of about
ten months, a total number of 6950 electronic boards were tested with an
acceptance yield of 99.1%
Validation and integration tests of the JUNO 20-inch PMTs readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino
detector currently under construction in China. JUNO will be able to study the
neutrino mass ordering and to perform leading measurements detecting
terrestrial and astrophysical neutrinos in a wide energy range, spanning from
200 keV to several GeV. Given the ambitious physics goals of JUNO, the
electronic system has to meet specific tight requirements, and a thorough
characterization is required. The present paper describes the tests performed
on the readout modules to measure their performances.Comment: 20 pages, 13 figure
- …