393 research outputs found

    Genetic variation for nutrient use efficiency in maize under different tillage and fertilization regimes with special emphasis to plant microbe interaction

    Get PDF
    Conservation tillage (no-till and reduced tillage) brings many benefits with respect to soil fertility and energy use, but it also has drawbacks regarding the need for synthetic fertilizers and herbicides. To promote conversation tillage in organic farming systems, crop rotation, fertilization and weed control have to be optimized. In addition, crop varieties are needed with improved nutrient use efficiency (NUE) and high weed competitiveness or tolerance

    First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations

    Get PDF
    KEY MESSAGE: Dents were more heat tolerant than Flints. QTL for heat tolerance with respect to grain yield at field conditions were identified considering multiple populations and environments. ABSTRACT: High temperatures have the potential to cause severe damages to maize production. This study aims to elucidate the genetic mechanisms of heat tolerance under field conditions in maize and the genome regions contributing to natural variation. In our study, heat tolerance was assessed on a multi-environment level under non-controlled field conditions for a set of connected intra- and interpool Dent and Flint populations. Our findings indicate that Dent are more heat tolerant during adult stage than Flint genotypes. We identified 11 quantitative trait loci (QTL) including 2 loci for heat tolerance with respect to grain yield. Furthermore, we identified six heat-tolerance and 112 heat-responsive candidate genes colocating with the previously mentioned QTL. To investigate their contribution to the response to heat stress and heat tolerance, differential expression and sequence variation of the identified candidate genes should be subjected to further research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-016-2674-6) contains supplementary material, which is available to authorized users

    Multi-parental QTL mapping of resistance to white spot of maize (Zea mays) in southern Brazil and relationship to QTLs of other foliar diseases

    Get PDF
    Maize white spot (MWS) is one of the most important foliar diseases in Brazil causing significant yield losses. Breeding genotypes with MWS resistance is the most sustainable alternative for managing such losses; however, their genetic control is poorly understood. Our objectives were to identify genomic regions controlling MWS resistance and to explore the presence of common regions controlling resistance to MWS, grey leaf spot (GLS) and northern corn leaf blight (NCLB). We performed a multi-parental QTL mapping for MWS and GLS resistance with a total of 474 testcrosses and phenotypic data collected in southern Brazil. Six QTLs for MWS resistance on bins 1.03, 1.04, 6.02, 8.05, 1.03, and 10.06 were detected. These findings were compared with previously reported QTLs for NCLB in the same populations, and a common QTL region (bin 8.05) controlling MWS and NCLB resistances was identified. Our findings contribute to a better understanding of MWS resistance by revealing three QTLs (bin 6.02, 1.03, and 10.06), to the best of our knowledge, not yet described in the literature, that are valuable for improving MWS resistance and one promising candidate region for multiple disease resistance.Fil: Kistner, María Belén. Universidad de Hohenheim; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; ArgentinaFil: Galiano Carneiro, Ana Luísa. Kleinwanzlebener Saatzucht; Alemania. Universidad de Hohenheim; AlemaniaFil: Kessel, Bettina. Kleinwanzlebener Saatzucht; AlemaniaFil: Presterl, Thomas. Kleinwanzlebener Saatzucht; AlemaniaFil: Miedaner, Thomas. Universidad de Hohenheim; Alemani

    Exploiting heterosis in pearl millet for population breeding in arid environments

    Get PDF
    In the desert region of Rajasthan, India, farmers mainly grow pearl millet [Pennisetum glaucum (L.) R. Br.] landraces. The adoption of modern cultivars is generally low because of their poor adaptation to extreme drought stress. The objective of this study was to evaluate the performance of six elite breeding populations and three landraces and to determine the heterotic pattern among the 36 diallel crosses of those populations. Field experiments were conducted in eight environments in India. Mean grain yields (GYs) in the three environments with favorable growing conditions were double to threefold those in the three arid environments. The elite populations generally showed higher GY than the landraces; stover yield (SY) was similar in both population types. The landraces flowered earlier, had a higher tillering potential, and smaller seeds. Mean level of midparent heterosis was generally low, ranging from 0.85% for time to flowering (TF) to 6.57% for SY. For GY, expression of heterosis for individual population crosses was between -14 and +30% under drought stress, and between -9 and +17% in the favorable environments. For SY, mean heterosis was always positive and higher than for GY. The elite x landrace population crosses with high mean GY and high levels of heterosis under drought stress could be beneficial to widen the germplasm base and to combine the high yield potential of elite materials with the good adaptation of the landraces

    Multi-parent QTL mapping reveals stable QTL conferring resistance to Gibberella ear rot in maize

    Get PDF
    Maize production is on risk by Gibberella ear rot (GER) caused by Fusarium graminearum. This is one of the most important ear rot diseases in temperate zones as it leads to yield losses and production of harmful mycotoxins. We investigated, for the first time, the potential use of Brazilian tropical maize to increase resistance levels to GER in temperate European flint germplasm by analyzing six interconnected biparental populations. We assessed GER symptoms in Brazil and in Europe in up to six environments (= location × year combinations) during the growing seasons of 2018 and 2019. We conducted multi-parent QTL and biparental QTL mapping, and identified four QTLs with additive gene action, each explaining 5.4 to 21.8% of the total genotypic variance for GER resistance. Among them, QTL q1 was stable across test environments, populations, and between inbred lines and testcrosses. The accuracies of genomic prediction ranged from 0.50 to 0.59 depending on the resistance donor and prediction model. Jointly, our study reveals the potential use of Brazilian resistance sources to increase GER resistance levels by genomics-assisted breeding.EEA PergaminoFil: Galiano-Carneiro, Ana L. University of Hohenheim. State Plant Breeding Institute; AlemaniaFil: Galiano-Carneiro, Ana L. Kleinwanzlebener Saatzucht (KWS) SAAT SE & Co. KGaA; AlemaniaFil: Kessel, Bettina. Kleinwanzlebener Saatzucht (KWS) SAAT SE & Co. KGaA; AlemaniaFil: Presterl, Thomas. Kleinwanzlebener Saatzucht (KWS) SAAT SE & Co. KGaA; AlemaniaFil: Gaikpa, David Sewordor. University of Hohenheim. State Plant Breeding Institute; AlemaniaFil: Kistner, María Belén. University of Hohenheim. State Plant Breeding Institute; AlemaniaFil: Kistner, María Belén. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Maíz; ArgentinaFil: Kistner, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miedaner, Thomas. University of Hohenheim. State Plant Breeding Institute; Alemani

    Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pathogen identification in clinical routine is based on the cultivation of microbes with subsequent morphological and physiological characterisation lasting at least 24 hours. However, early and accurate identification is a crucial requisite for fast and optimally targeted antimicrobial treatment. Molecular biology based techniques allow fast identification, however discrimination of very closely related species remains still difficult.</p> <p>Results</p> <p>A molecular approach is presented for the rapid identification of pathogens combining PCR amplification with microarray detection. The DNA chip comprises oligonucleotide capture probes for 25 different pathogens including Gram positive cocci, the most frequently encountered genera of <it>Enterobacteriaceae</it>, non-fermenter and clinical relevant <it>Candida </it>species. The observed detection limits varied from 10 cells (e.g. <it>E. coli</it>) to 10<sup>5 </sup>cells (<it>S. aureus</it>) per mL artificially spiked blood. Thus the current low sensitivity for some species still represents a barrier for clinical application. Successful discrimination of closely related species was achieved by a signal pattern recognition approach based on the k-nearest-neighbour method. A prototype software providing this statistical evaluation was developed, allowing correct identification in 100 % of the cases at the genus and in 96.7 % at the species level (n = 241).</p> <p>Conclusion</p> <p>The newly developed molecular assay can be carried out within 6 hours in a research laboratory from pathogen isolation to species identification. From our results we conclude that DNA microarrays can be a useful tool for rapid identification of closely related pathogens particularly when the protocols are adapted to the special clinical scenarios.</p

    Farmers’ seed systems and management practices determine pearl millet genetic diversity patterns in semiarid regions of India

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.] landraces provide nutritional quality and security under the harsh environmental conditions of Rajasthan, India. Using amplified fragment length polymorphism (AFLP), this study investigated pearl millet genetic diversity patterns and related the results to farmers' local knowledge and seed systems. Thirty-nine cultivars were assessed: 14 farmer landraces from western Rajasthan, 13 farmer landraces from eastern Rajasthan, and 12 control cultivars. Shannons' information index for western (H = 0.34) and eastern (H = 0.32) Rajasthan landraces was up to 14% higher than in composite-based improved cultivars. Analysis of molecular variance (AMOVA) revealed that variation within landrace populations was much higher than between regional samples. In the west, intra-village variation was higher than inter-village variation. In the east, variation between landrace groups bearing a specific name was higher than intra-group variation. Gene flow, inferred from genetic distances between populations, was used as an indicator for seed exchange between farmers. In western Rajasthan, seed exchange appears to be especially dynamic, as gene flow was greater than N,m = 25 among most of its populations. Farmers' knowledge of local cultivars and seed systems was, for the most part, supported by the AFLP analysis. These results are relevant for in situ maintenance and breeding strategies with a view to improving traditional cultivars, specifically performance and yielding stability

    Farmers' seed management practices open up new base populations for pearl millet breeding in a semi-arid zone of India

    Get PDF
    Farmers in western Rajasthan (northwest India) produce and maintain their landrace populations of pearl millet through their own distinct seed management practices. The objective of this study was to characterize morphological and agronomic variability of different traits between and within three farmers' populations using quantitative genetic parameters. Populations examined were a typical landrace and two modified landraces, which were generated through farmer introgression of modern cultivars with different levels of subsequent selection. From these three populations, 100 random full-sib progenies were evaluated in field trials at two locations in western Rajasthan (Mandor and Jodhpur) over two years (1998 and 1999). Significant genetic variation existed within the three populations. Estimates of heritability were moderate to high for all observed traits. Predicted selection response for grain yield across environments was 1.6% for the typical landrace and 2.2% for both the modified landraces. Results suggest that the introgression of modern cultivars into landraces had increased the genetic diversity. Therefore, farmers' current breeding activities could open up new resources for plant breeding programmes aiming at plant improvement for the semi-arid zones of India
    • …
    corecore