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Abstract Maize production is on risk by Gibberella

ear rot (GER) caused by Fusarium graminearum. This

is one of the most important ear rot diseases in

temperate zones as it leads to yield losses and

production of harmful mycotoxins. We investigated,

for the first time, the potential use of Brazilian tropical

maize to increase resistance levels to GER in temper-

ate European flint germplasm by analyzing six inter-

connected biparental populations. We assessed GER

symptoms in Brazil and in Europe in up to six

environments (= location 9 year combinations) dur-

ing the growing seasons of 2018 and 2019. We

conducted multi-parent QTL and biparental QTL

mapping, and identified four QTLs with additive gene

action, each explaining 5.4 to 21.8% of the total

genotypic variance for GER resistance. Among them,

QTL q1 was stable across test environments, popula-

tions, and between inbred lines and testcrosses. The

accuracies of genomic prediction ranged from 0.50 to

0.59 depending on the resistance donor and prediction

model. Jointly, our study reveals the potential use of

Brazilian resistance sources to increase GER resis-

tance levels by genomics-assisted breeding.

Keywords Gibberella ear rot (GER) � Fusarium
graminearum � Stable resistance � Genetic resources �
QTL mapping � Genomic selection

Introduction

Fusarium spp. is one of the most important crop

pathogens in maize (Zea mays L.) reducing yield and

threatening human and animal health by mycotoxins.

These hemibiotrophic fungi can cause diseases during

all growth stages of the plant including stalk and ear

rots (Munkvold et al. 1997; Pfordt et al. 2020). F.

graminearum, F. verticillioides, and F. temperatum, a

new species separated from F. subglutinans, are the

main species causing ear rot in temperate zones

(Pfordt et al. 2020). The composition of species in

each environment is mainly associated with weather

conditions during silking. At this developmental stage,
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F. graminearum is favored by high precipitation and

moderate temperatures whereas F. verticillioides is

favored by low humidity and high temperatures

(Bottalico 1998; Munkvold 2003; Pfordt et al. 2020).

In NW Europe, the main use of maize is for animal

feed as silage or corn-cob-mix (Deutsches Maiskomi-

tee 2020). GER symptoms appear as white to pinkish

mold starting on the tip of the cobs and may cover the

entire cob in a susceptible genotype. F. graminearum

produces mainly deoxynivalenol (DON), a mycotoxin

causing reduction of voluntary feed intake and even

vomiting, and zearalenone (ZEA), an estrogen-like

mycotoxin that causes fertility disorders including

abortions (Döll and Dänicke 2011). Among livestock,

pigs are the main consumers of corn-cob-mix

(Deutsches Maiskomitee 2020) and they are the most

sensitive animals to these mycotoxins (Pierron et al.

2016). For this reason, the European Union established

an orientation value of maximum 0.9 mg DON kg-1

for pig feed (European Commission 2006). However,

this limit can be easily surpassed when the environ-

mental conditions are favorable for the sporulation and

spread of this pathogen (LSV Bayern 2019). For

instance, Europe has a high to severe risk of myco-

toxin contamination in animal feed where 83% of the

maize samples were tested positive for DON in recent

years (Biomin 2020). Little effort in breeding resistant

varieties against ear rot was made in the past and

nowadays most of commercial hybrids have a lower

ear rot resistance than desirable (Bush et al. 2004;

Mesterházy et al. 2012; Zila et al. 2013).

In the European Union, no fungicides are released

to control Fusarium diseases in maize and, thus,

agronomical practices such as ploughing and host

resistance are the most promising methods to control

disease spread and mycotoxin accumulation (Bolduan

et al. 2009; Pfordt et al. 2020). Reduction of DON

accumulation through resistance breeding has been

observed for all maize maturity groups (LSV Bayern

2019; Löffler et al. 2009). Furthermore, genotypes

with less DON accumulation do not negatively affect

the expression of agronomical traits (Martin et al.

2012c), thus allowing breeding of high yielding

cultivars (Vigier et al. 2001; Eller et al. 2008; Martin

et al. 2012c).

For GER, uniquely quantitative resistance has been

identified to date (Martin 2012; Gaikpa and Miedaner

2019). Several studies based on adapted germplasm

have been conducted to dissect the genetic architecture

of this trait. They identified QTLs explaining 21 to

59% of the total genotypic variance (Martin et al.

2011, 2012b; Giomi et al. 2016; Han et al. 2016, 2018;

Kebede et al. 2016; Gaikpa and Miedaner 2019).

Employing exotic germplasm may introduce new

sources of resistance alleles to adapted European

germplasm (Gaikpa andMiedaner 2019). Tropical and

subtropical maize as well as popcorn populations are

possible sources of resistant alleles for Fusarium ear

rot for temperate maize breeding pools (Zila et al.

2013) and should be explored to achieve higher

resistance levels. However, only few studies exploit-

ing genetic resources to increase ear rot resistance

have been conducted (Mesterházy et al. 2012; Zila

et al. 2013; Butrón et al. 2015).

With the aim to identify QTL with a high environ-

mental stability we evaluated six biparental popula-

tions originating from crosses between Brazilian

resistant genotypes and European susceptible germ-

plasm. In Brazil, two biparental populations compris-

ing 273 double haploid (DH) lines were tested while

four bi-parental populations comprising 486 hybrids

were tested in Europe with one common resistance

donor being the same. In particular, our objectives

were to: (1) validate the use of Brazilian genetic

resources in Europe; (2) dissect the genetic architec-

ture of GER resistance in these sources; (3) verify the

usefulness of genomics-assisted breeding to boost

breeding progress for this complex quantitative trait.

Materials and methods

Plant material and field trials

Our experiments comprised six biparental popula-

tions: T3 9 A6, T3 9 A7, T3 9 A8, T3 9 A12,

T4 9 A4 and T4 9 A5, with 99, 174, 155, 71, 110,

and 150 individuals, respectively, each resulting from

a cross between a GER resistance donor (Brazilian

tropical DH line, ‘‘T’’) and a GER susceptible

recipient (European adapted DH line, ‘‘A’’). Recipi-

ents ‘‘A6’’, ‘‘A7’’, ‘‘A8’’ and ‘‘A12’’ belong to the stiff

stalk synthetic (SSS) while recipients ‘‘A4’’ and ‘‘A5’’

belong to the non-stiff stalk (NSSS) heterotic groups,

respectively. Populations T3 9 A6 and T3 9 A7

comprised 99 and 174 double haploid (DH) lines,

respectively, and were assessed in Brazil as line per se

in Campo Largo in 2018 and in Ponta Grossa in 2019,
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both cities in Paraná state located in the southern

region of Brazil. Jointly, 486 testcrosses from the other

four biparental populations were evaluated in Europe

in three locations: Monselice, Italy, and Gondelsheim

and Bernburg, Germany, during the growing seasons

of 2018 and 2019 (except by donor T4 which was

assessed uniquely in 2019) leading to up to six testing

environments, (= combination of location 9 year).

All progenies intended to be tested in Europe were

crossed with the same susceptible early flint tester

aiming to establish chilling tolerance and an earlier

maturity for the European testing locations. For

simplification, we will refer to T3 9 A6 and

T3 9 A7 as T3 donor, tested in Brazil as per se

populations, to T3 9 A8 and T3 9 A12 as T3 donor,

and T4 9 A4 and T4 9 A5 as T4 donor, both tested in

Europe as testcross populations.

Our experiments were allocated in an alpha design

with two replications where each experimental unit

comprised a four-meter row with approximately 20

plants. Standard agricultural practices including insec-

ticides and fungicides not being effective against

Fusarium were applied at the Brazilian locations.

Inoculation and trait assessment

In Brazil, inoculum was kindly provided by Dr. Lygia

Vitória Galli Terasawa (Federal University of Paraná,

Curitiba, Brazil). The inoculum was obtained by

isolating three sources of Fusarium graminearum from

contaminated maize cobs collected at three different

locations in the state of Paraná, Brazil, in the growing

seasons 2015 and 2016. An inoculum suspension with a

concentration of 50,000 conidia ml-1 containing these

three inoculum sources was produced and 1 ml was

inoculated into the maize silk channel. In Europe, the

highly aggressiveFusarium graminearum strain IFA 66

was kindly provided by Prof. Dr. Marc Lemmens

(University of Natural Resources and Life Sciences,

Vienna, Austria) and used to prepare our inoculum

suspension following the protocol of Reid et al. (1996).

Two ml of the inoculum suspension containing

1.5 9 104 spores ml-1 were applied with a one-needle

vaccinator on the silk channel of the maize cobs in the

European locations. Both in Brazil and in Europe, ten

plants of each experimental unit were inoculated,

excluding the first plant of the row due to possible

border effect, three to 6 days after the experimental unit

was flowering. Rows were declared as flowering when

at least 50% of the plants on the row presented extruded

silks. Female flowering (FF) dates were collected for

each row in a two-day interval.

Approximately 50 days after inoculation, cobs

were dehusked and all plants were visually assessed

for GER symptoms by estimating the percentage of the

ear covered by mycelium (Fig. 1). The 10 non-

inoculated plants were used as a control of the

proportions of naturally infected cobs. The arithmetic

means of the 10 assessed inoculated and the 10 control

plants (= naturally infected), respectively, were

employed for further statistical analyses.

Phenotypic data analysis

Phenotypic analyses for single environments were

performed using linear mixed models and outlier

detection procedures as proposed by Bernal-Vasquez

et al. (2016). All GER phenotypic data were arcsine

square root transformed to attend the normality

assumption and reduce the heterogeneity of variances.

Combined analysis without critical outliers (not more

than 15% of the complete data were removed) were

conducted according to the following mixed model:

yijklm ¼ lþ Gi þ Yj þ Lk þ LYkj þ LYRkjl þ LYRBkjlm

þ eijklm

where yijklm was the phenotypic observation of the ith

genotype, jth year, kth location, lth replication andmth

incomplete block. The symbol l represents the overall

mean, Gi the effect of the ith genotype, Yj is the effect

of the jth year, Lk the effect of the kth location, and its

interaction terms, Rl is the effect of the lth replication,

Bm the effect of the mth incomplete block, and eijklm is

Fig. 1 Assessment scale of damaged maize cobs by GER. 0%

represents healthy and 100% completely diseased cobs. The

percentage is assigned depending on the percentage of the cob

with GER symptoms
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the heterogeneous error variance. The same model

excluding the year effects was used for the single

location analysis.

Gi and Yj effects were included in the fixed state-

ment of the model to obtain the best linear unbiased

estimators (BLUEs). The variance components were

obtained through the restricted maximum likelihood

method (REML) by including only the Yj effects in the

fixed statement of the model above. The significance

of the variance components was obtained by likeli-

hood ratio test between the full and incomplete model

(Stram and Lee 1994). Binary dummy variables were

used to separate the effects of each population, checks

and replicates as proposed by Piepho et al. (2006). For

the sake of simplicity, they were not shown in the

described model.

The broad sense heritability (H2) was estimated

following the formula:

H2 ¼ r2G

r2G þ r2L
L þ r2Y

Y þ r2LY
LY þ r2e

LYR

where r2G, r
2
L; r

2
Y ; r

2
LY and r2e are the genotypic, loca-

tion, year, location � year and error variances,

respectively. L; Y and R correspond to the number of

locations, years, and replicates, respectively. Pheno-

typic correlations based on BLUEs were calculated

with Pearson product moment correlation coefficients.

In the inbred populations tested in Brazil, the

correlation coefficient between GER and FF was

significant (r = - 0.49 and p\ 0.001) (data not

shown). Therefore, GER was adjusted for FF by

including FF as fixed effect in the mixed model to

estimate the best linear unbiased estimators (BLUEs)

as described by Emrich et al. (2008). After the

corrections, the correlation between GER and FF

was reduced to r = - 0.30 (p\ 0.001). This GER

rating adjusted for FF (GER_FF) was used for all

further analysis. In the testcross populations tested in

Europa, the correlation coefficient between GER and

FF was low and not significant (r = - 0.033 and

p[ 0.05), therefore no corrections for FF were

necessary.

All analyses were conducted in R environment (R

Development Core Team 2018, version 3.5.1). Mixed-

model computations were performed by using

ASReml-R 3.0 (Gilmour et al. 2009).

Molecular data

DH lines were genotyped at KWS molecular labora-

tory with an Illumina 15 k SNP chip based on the

public Illumina MaizeSNP50 BeadChip. The ten

maize chromosomes were partitioned into bins of

0.5 cM (genetic map IBM, physical map AGPv02,

Ganal et al. 2011) to construct the genetic map.

Regions adjacent to centromers were especially

markedly enriched to account for the low recombina-

tion rates in this chromosome area.

The number of polymorphic markers in each

population ranged from 5832 to 7039. Quality control

was conducted by removing monomorphic or missing

alleles for both parents, genotypes withmore than 25%

missing values, markers with more than 10% missing

data and markers with minor allele frequency (MAF)

lower than 5% in each population. After the quality

check, 4603, 5585 and 2784 SNP markers were

available for the Brazilian crosses with T3, the

European crosses with T3 and T4, respectively.

QTL mapping analysis

Multi-parent QTL mapping analysis was conducted

with the R package mppR version 1.2.1 (Garin et al.

2018). By employing this package, interconnected

biparental populations from each continent were

analyzed jointly by the method of composite interval

mapping (CIM) (Zeng 1993, 1994). We obtained the

allele-substitution effect of the identified QTL through

a bi-allelic model where alleles from different popu-

lations are considered to be identical by state (IBS),

same SNP score transmitted the same allele for all

individuals with common parents (e.g., model B in

Würschum et al. 2012; Garin et al. 2017). For this

model, population structure was accounted by the

k-model proposed by Yu et al. (2006).

Permutation tests were conducted by performing

1000 iterations and the significance thresholds were

obtained from the 90th percentile of the maximum

LOD score distribution of all iterations (Broman and

Sen 2009). QTL mapping for each model was

conducted in a first step by a simple interval mapping

(SIM) and the significant QTL from this analysis were

applied as cofactors for the CIM. The confidence

interval of each QTL was obtained by - log10 (p)

value drop off interval. The contribution of each QTL

to the phenotypic variance was computed by
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comparing the full model, containing all the QTL, and

the incomplete model, excluding only the detected

QTL of interest. Individual explained genotypic

variance (pGÞ were obtained following the equation

proposed by Utz et al. (2000):

pG ¼
R2
adj

H2

where R2
adj corresponds to the adjusted R2 from the

linear model containing all identified QTL and H2 to

the average heritability of heritability estimates for

individual populations with a common donor.

Biparental QTL mapping for population T3 9 A8

was also evaluated individually with the software for

meta-QTL analysis (PlabMQTL) (Utz 2011) by the

CIM method, as population T3 9 A12 was not

included in the QTL analysis due to the low genetic

variance. Additive and additive by additive epistatic

models were investigated. Empirical thresholds for

LOD scores were determined using 1000 permutation

tests and assuming an experiment-wise error of 0.10.

The selection of cofactors was done according to the

modified BIC (mBIC) model (Baierl et al. 2006). The

identified QTL were assumed as co-located when their

confidence intervals overlapped.

Marker-assisted, genomic and weighted genomic

predictions

Marker-assisted predictions were conducted for breed-

ing values of testcrosses with all QTLs. Genomic

prediction was carried out by ridge-regression BLUP

(RR-BLUP; Whittaker et al. 2000) with the R package

‘‘rrBLUP’’ (Endelman 2011; Endelman and Jannink

2012) within each donor group. Missing SNP marker

information was imputed for each donor group with

the software LinkImpute (Money et al. 2015) and

resulted in high imputation accuracies ([ 90%). In

addition, we performed a weighted ridge-regression

BLUP (wRR-BLUP) where the same significant

markers applied for marker-assisted predictions were

included in the fixed statement of the genomic

prediction model (Zhao et al. 2014; Spindel et al.

2016). The prediction accuracy was defined as the

Pearson’s product-moment correlation coefficient

between observed and predicted trait values divided

by the square root of the broad-sense heritability.

Results

Adjusted means for GER severity ranged, on average,

from 4.9 to 10.0 for per se populations and 24.4 to

28.9% for the testcross populations (Table 1). Entry-

mean heritabilities were moderate to high ranging

from 0.68 to 0.72 for per se populations and 0.44 to

0.72 for testcross populations except for population

T3 9 A12 where the heritability was only 0.24 due to

the non-significant genetic variation (Table 1). For

this reason, the population T3 9 A12 was not

included in the QTL mapping analysis. Both GER_FF

and GER showed a quantitative distribution with T3

being more resistant than the adapted parental lines

(Fig. 2). Within Europe, most of the locations showed

higher GER severity in 2019 compared to 2018 and

this tendency was observed for all biparental popula-

tions (Fig. 3).

Jointly, we identified four QTL that explained 5.4 to

21.8% of the genetic variance, most of them had minor

effects (\ 15% pG) only. They were located on

chromosome bins 1.02, 3.08, 5.06, and 8.05. No

dominance or additive 9 additive QTL were identi-

fied indicating uniquely additive QTL for GER_FF

and GER in our study. QTL q1was identified across all

QTL analyses performed including different bipar-

ental populations, and line and testcross populations

across both continents. QTL q1 explained between

10.2 and 21.8% of the genotypic variance where the

highest variance was observed for population

T3 9 A8 (Table 2). Moreover, none of the identified

QTL for GER were overlapping with the identified

QTL for FF (data not shown).

Prediction accuracy by weighted genomic predic-

tion (wRR-BLUP) was slightly higher compared to

marker-assisted selection for both donors (MAS,

Fig. 4). Prediction accuracy for GER in testcrosses

with donor T3 were of 0.53, 0.50 and 0.59 estimated

for MAS, RR-BLUP and wRR-BLUP, respectively.

Lower prediction accuracy for MAS (0.47), wRR-

BLUP (0. 57) and RR-BLUP (0.55) was obtained for

testcrosses with donor T4. For both donors, the wRR-

BLUPmethod led to the highest prediction accuracies.

For population T3 9 A8 only wRR-BLUP led to

slightly improved predictions compared to MAS (data

not shown).
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Discussion

The extension of maize acreage to attend the increas-

ing demand in combination with short crop rotations

including the Fusarium susceptible wheat will

increase the risk of ear rots by Fusarium spp. and

subsequent mycotoxin contamination in the near

future (Ray et al. 2013; Pfordt et al. 2020). To keep

Table 1 Statistics summary and variance components for

GER_FF (arcsin transformed Gibberella ear rot adjusted for

female flowering date, original data without transformation in

parentheses) of two populations of DH inbreds evaluated in

Brazil and GER (arcsin transformed Gibberella ear rot) of

testcrosses of four DH inbred populations evaluated in Europe

Trait Brazil Europe

Pop T3xA6 T3xA7 T3xA8 T3xA12 T4xA4 T4xA5

No. env. 2 6 3

Phenotypic data

Mean 4.94 (7.66) 10.01 (10.99) 27.81 (31.20) 28.86 (33.45) 28.61 (31.99) 24.33 (27.63)

Median 3.25 (2.64) 8.00 (8.30) 27.96 (31.50) 27.80 (31.52) 28.23 (30.57) 23.65 (26.60)

Min 0.16 (0.00) 0.00 (0.00) 5.23 (6.83) 10.70 (11.49) 4.12 (5.05) 5.89 (6.25)

Max 47.56 (51.13) 76.24 (77.50) 59.26 (55.00) 79.30 (77.99) 62.41 (63.49) 62.96 (61.75)

LSD5 % 2.38 2.38 4.34 4.34 4.34 4.34

n 99 174 155 71 110 150

Variance components

r2G 0.01*** 0.04*** 0.010*** 0.002 0.007*** 0.007***

r2G�L
0.01*** 0.01*** 0.001 0 0.012*** 0.003*

r2G�Y
– – 0 0 – –

r2G�Y�L
– – 0.008** 0.018*** – –

r2e 0.01 0.01 0.060 0.060 0.03 0.03

H2 0.72 0.68 0.61 0.24 0.44 0.54

Gibberella ear rot was estimated as the percentage of ear affected. Minimum (Min), median, mean, and maximum (Max.) scores are

shown for the backtransformed phenotypic data. Number of genotypes (n) and least square of a difference (LSD5%) are also

indicated. The variance components include the genetic (r2G), genotype-location (r2G�L), genotype-year (r2G�Y), genotype-year-

location interactions (r2G�Y�L), and residuals (r2e) variances. Entry mean heritability (H2) for each population are also assigned

*p\ 0.05; **p\ 0.01; ***p\ 0.001

Brazil

GER_FF (%)

Europe

Fr
eq

ue
nc

y

3.9 15.2 31.9 51.5 70.8 3.9 15.2 31.9 51.5 70.8

0

50

100

150

0.0
GER (%)

T3 A7

A4

A12

A5 A8

T4T3

A6

Fig. 2 Phenotypic distribution of the backtransformed Gibberella ear rot (GER) data assessed in Brazil adjusted for female flowering

date (FF) and in Europe; pointing the respective tropical (T) and adapted (A) parental lines by arrows
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resistance levels high in the long-term, it is essential to

employ diversified resistance sources (Nelson et al.

2018). Tropical maize, including Brazilian germ-

plasm, could be valuable sources of resistance alleles

G
E

R
 s

ev
er

ity
 (%

)

GER (%)
GON
BBG
MCE

0.00

22.98

70.80

99.45

Check

Flint x (T3 x A12)

Flint x (T3 x A8)

Flint x (T4 x A4)
Flint x (T4 x A5)

2018 2018 20182019 2019 2019 2019 2019

Fig. 3 Box plots for

Gibberella ear rot (GER)

severity (backtransformed

values) of different

biparental populations

evaluated in Europe in six

environments (year-location

combinations,

environments:

GON = Gondelsheim/DE,

BBG = Bernburg/DE,

MCE = Monselice/IT; in

2018 and 2019). Horizontal

lines within boxes indicate

the median, black squares

refer to outliers. The checks

comprised parental lines and

commercial resistant and

susceptible hybrids

Table 2 QTL for Gibberella ear rot resistance identified across populations sharing the same inbred donor and inbreeding level

(multi-parent QTL mapping

Population nG nM Type QTL Bin QTL (cM) Range (cM) LOD score pG (%) a-effect

Brazil

T3 9 A6_A7 266 4603 PS q1 1.02 60.54 58.89–62.92 5.57 10.17 - 0.96

T3 9 A6_A7 266 4603 PS q2 3.08 196.72 194.99–197.03 4.63 14.86 - 1.33

T3 9 A6_A7 266 4603 PS q3 5.06 162.53 161.56–162.71 4.65 5.37 - 0.43

Europe

T4 9 A4_A5 229 2784 TC q1 1.02 58.64 50.40–85.62 3.74 10.92 0.35

T4 9 A4_A5 229 2784 TC q4 8.05 120.04 119.75–120.56 3.78 11.67 0.35

T3 9 A8 145 5585 TC q1 1.02 60.00 59.93–61.04 6.56 21.84 - 0.34

Populations T3 9 A6 and T3 9 A7 were written as T3 9 A6_A7 for simplification, as well as populations T4 9 A4 and T4 9 A5,

T4 9 A4_A5) or T3 9 A8 (with PLABMQTL), number of genotypes (nG), number of markers used (nM), type of population

assessed (PS for per se and TC for testcrosses), QTL location (cM), QTL confidence interval range (cM), explained genotypic

variance (pG) and the backtransformed allele substitution effect (a-effect) of the tropical parent for GER_FF assessed in Brazil and

GER assessed in Europe. Bolded name indicates co-located QTL
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for temperate germplasm (Hallauer et al. 2010; Poland

et al. 2011), but are not yet fully exploited. Therefore,

we investigated the potential use of Brazilian sources

as GER resistance donors for European flint maize.

Aiming for environmentally stable resistances we

tested a total of six interconnected biparental popula-

tions both in Brazil and in Europe.

Assessing GER in contrasting environments

In Brazil, tropical parent ‘‘T3’’ showed higher resis-

tance levels compared to the European adapted parents

‘‘A6’’ and ‘‘A7’’ as expected. However, the population

mean for GER damage was low in both environments.

This could be explained by the concentration of

spores. We applied 50,000 spores ml-1 in each maize

ear in the experiments located in Brazil, but an even

higher concentration might be necessary to increase

disease severity. Still, genetic variance was significant

with moderate to high heritabilities. Conversely, in

Europe, the genetic variance was lower than in Brazil

and only the tropical parent T3 was more resistant than

the adapted lines. The tropical parent T4 and adapted

European parent inbred lines, however, were similarly

susceptible.

Our phenotypic data was assessed after inoculation

of maize cobs through the silk channel. This is the

most important infection pathway for F. graminearum

in the absence of insect injury and the most common in

the northern maize growing regions (Reid et al.

1992, 1996; Munkvold et al. 1997; Bolduan et al.

2009). However, this method has the disadvantage to

be unstable across different weather conditions (Reid

et al. 1996;Mesterházy et al. 2012; Butrón et al. 2015).

This can be one of the reasons why the GER severity

was lower in 2018 compared to 2019 for most of the

European locations.

The genotype 9 environment interactions were

high and significant both in Brazil and in Europe.

This is in accordance with other studies where
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resistance was found to be variable when assessing

GER resistance in several contrasting environments

(Bolduan et al. 2009; Löffler et al. 2009). Independent

selection for each geographic region was recom-

mended (Butrón et al. 2015) and is practiced in Europe

according to the different breeding programs assigned

to each maturity group. In our study, we assessed

phenotypic data in up to six contrasting environments

as the main objective of this research work was to

identify stable resistance QTL that are effective even

in the current global warming conditions.

QTL mapping reveals stable QTL

across continents, environments, and populations

We identified four QTL explaining between 5.37 and

21.84% of the GER genotypic variance where most of

them had minor effects (\ 15%pG). This is in

accordance with other studies that identified many

QTL with small effects and a global explained

genotypic variance varying between 21% and 59%

for GER resistance (Martin et al. 2011, 2012b; Kebede

et al. 2016; Gaikpa and Miedaner 2019). Martin et al.

(2012a) identified QTL explaining between 21 and

49% of the global genotypic variance in three

biparental European populations with no common

QTL identified across populations. QTL q1 was

identified across populations. In addition, this QTL

had a major effect on population T3 9 A8 and could

alone explain 21.8% of the genotypic variance. The

favorable allele originated from the tropical parent T3

indicating that this Brazilian donor can be a great

source of stable QTL for GER resistance. However,

we identified only a low number of QTL. This might

indicate that possibly each family was segregating for

a different set of QTLs and/or other genomic regions

conferring resistance to GER could not be identified

due to the highly quantitative nature of this trait (Blanc

et al. 2006; Ogut et al. 2015; Han et al. 2016).

However, we also conducted a QTL mapping for each

family separately (data not shown) and did not identify

a larger number of QTL. Another main reason might

be that only few QTL are stable across six European

environments including two very contrasting years

and field locations (northern Italy and Germany). This

conclusion is supported by the high genotype 9

environment interaction variances.

QTL conferring GER resistance were identified on

chromosome bins 1.02, 3.08, 5.06 and 8.05 in our

study, namely QTL q1, q2, q3 and q4, respectively

(Table 1). The QTL q1 identified across environments

and populations is located in a genomic region known

to confer resistance to ear rot caused by multiple

pathogens (Wisser et al. 2006). QTL q2 was identified

in the same bin position previously reported to

significantly contribute to GER resistance and reduced

DON contamination, while the QTL on chromosome

bin 5.06 was in the same bin as a QTL previously

reported to be associated to DON contamination

(Martin et al. 2012; Martin et al. 2012b). Kebede

et al. (2016) identified one QTL for GER resistance

near the QTL identified on chromosome bin 8.05.

Overlapping QTL between GER and DON are

expected as both traits are highly correlated

(r[ 0.86; Butrón et al. 2015; Miedaner et al. 2015).

This was confirmed by co-located QTL for GER

resistance and reduced DON contamination in QTL

mapping studies suggesting that both traits are likely

to be controlled by a set of the same genes (Martin

et al. 2012b; Han et al. 2016). Additionally, different

genes might also play a role in GER resistance and

reduced DON accumulation (Gaikpa and Miedaner

2019).

Our germplasm included families belonging to the

SSS and NSSS heterotic groups, comprising popula-

tions of donors T3 and T4, respectively. We identified

a larger number of QTL within the SSS group

compared to the NSSS, but this is probably due to

the unbalanced number of families per heterotic group

in our study with four families from SSS and two from

NSSS, and the GER severity discrepancy between the

parental components of each heterotic group. Con-

versely, other studies identified that the flint germ-

plasm was more susceptible to ear rot and showed

higher DON and ZEA concentrations compared to the

dent pool. These differences were assigned to the few

founding populations composing the flint pool com-

pared to the dent pool which had a constant influx from

germplasms from other regions (Reif et al. 2005;

Löffler et al. 2010).

The major infection pathway of F. graminearum is

via the silks, but some species such as F. verticillioides

can infect cobs after silking additionally via insect

injuries on the cobs (Reid et al. 1992, 1996; Pfordt

et al. 2020). Kebede et al. (2016) investigated

infection by F. graminearum both through silk and

kernels and identified only three QTLs overlapping for

both infection pathways. These co-located QTL were
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identified on chromosomes 1, 2, and 8, where the QTL

on chromosome 8 was identified in a close location to

our QTL q4 (Kebede et al. 2016). With rising

temperatures due to global climatic change damage

by insects might increase in frequency and severity,

especially in the tropics and subtropics (Juroszek and

von Tiedemann 2013). For this reason, the identifica-

tion of QTL that are common among different

infection pathways can lead to a broader resistance.

In summary, the QTL identified in our study

showed mainly additive effects and no additive 9 ad-

ditive epistasis. This is in accordance with other

studies where GER was found to be controlled by

several additive QTL (Martin et al. 2012a) and

epistatic gene effects were of little importance in most

of the testing environments (Butrón et al. 2015).

Therefore, mainly additive and dominance effects

should be considered in a breeding program aiming to

increase ear rot resistances and decrease mycotoxin

accumulation (Butrón et al. 2015). In a study of GER

resistance in maize, mid-parent heterosis was

observed indicating partial dominance (Martin et al.

2012c). This is in accordance to results of Gendloff

et al. (1986) and Chungu et al. (1996) who identified

dominance and dominance 9 dominance gene action

although additive effects were more important.

Genomics-assisted breeding can successfully

select superior resistant genotypes for GER

QTL q1 alone explained 21.8% of genetic variation for

GER in testcrosses of the mapping population

T3 9 A8, 10.2% across per se populations derived

from T3 9 A6 and T3 9 A7, and 10.9% across

testcrosses of the mapping populations derived from

T4 9 A4 and T4 9 A5. Therefore, genomic selection

did not lead to a significantly higher prediction

accuracy compared to the marker assisted selection

approach (Fig. 4). It is important to notice that our

prediction accuracies might be overestimated as the

same germplasm was composing both the training and

prediction sets. In addition, the phenotypic data of all

genotypes were collected in the same environments

which may not illustrate the reality of commercial

breeding programs. Moreover, before the application

of the identified QTLs in MAS a QTL validation is

necessary. Brauner et al. (2016) conducted the first

validation study for QTLs on GER resistance. They

tested six QTL identified in a previous mapping study

and introgressed them into two different genetic

backgrounds. Resistance alleles at three QTLs signif-

icantly increased resistance to GER, but the effects

were significant only for a small subset of lines due to

linkage drag and/or epistasis with residual loci in non-

target regions.

To date, only two studies conducted a genomic

selection for GER resistance in maize (Gaikpa and

Miedaner 2019). Riedelsheimer et al. (2013) investi-

gated the influence of the training set (TS) composi-

tion on the prediction accuracy of agronomic traits and

GER on five interconnected biparental DH popula-

tions. They identified a decline on prediction accuracy

when full-sibs were replaced by half-sibs in the TS. In

our analysis, the prediction accuracy of genomic

selection was slightly higher for donor T3, for which

the TS was composed by the same families of the

validation set. The TS of donor T4 was composed by

two biparental populations with one common tropical

line and had slightly lower predictions than donor T3

(0.50 for T4 and 0.55 for T3). Han et al. (2018)

reported that increasing the TS set size with geneti-

cally distant individuals, in this case of the opposite

heterotic group, did not improve the genomic predic-

tion of GER resistance.

Conclusions

In this research project we tested two Brazilian lines as

resistance donors of GER. The tropical parent T3 was

resistant even in northern Italian and German locations

illustrating the independence of this resistance source

from environment. QTL q1 was proven to be

stable across populations and continents explaining

10.2 to 21.8% of the genotypic variance of GER

resistance depending on the situation. An independent

validation of this QTL would be very valuable. In

addition, genomics-assisted breeding can boost selec-

tion for GER resistance by wRR-BLUP. Given the

different maturity groups and other adaptation prob-

lems of tropical germplasm, however, marker-assisted

backcrossing of q1 might be recommendable to

integrate this prominent QTL into adapted European

germplasm.
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Broman KW, Sen Ś (2009) A guide to QTL mapping with R/qtl.

Springer, Madison

Bush BJ, Carson ML, Cubeta MA et al (2004) Infection and

fumonisin production by Fusarium verticillioides in

developing maize kernels. Phytopathology 94:88–93.

https://doi.org/10.1094/PHYTO.2004.94.1.88

Butrón A, Reid LM, Santiago R et al (2015) Inheritance of

maize resistance to Gibberella and Fusarium ear rots and

kernel contamination with deoxynivalenol and fumonisins.

Plant Pathol 64:1053–1060. https://doi.org/10.1111/ppa.

12351

Chungu C, Mather DE, Reid LM, Hamilton RI (1996) Inheri-

tance of kernel resistance to Fusarium graminearum in

maize. J Hered 87:382–385. https://doi.org/10.1093/

oxfordjournals.jhered.a023019

Deutsches Maiskomitee (2020) Beschreibung der Erntepro-

dukte. [Description of harvest products, In German].

https://www.maiskomitee.de/Verwertung/Tierische_

Veredlung/Beschreibung_der_Ernteprodukte. Accessed

16 June 2020
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