153 research outputs found

    Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor

    Get PDF
    Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting shell protein, PduK. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides, it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Not only are the purified, redesigned BMCs able to transform pyruvate into ethanol efficiently, but the strains containing the modified BMCs produce elevated levels of alcohol

    Effect of metabolosome encapsulation peptides on enzyme activity, co-aggregation, incorporation and bacterial microcompartment formation

    Get PDF
    Metabolosomes, catabolic bacterial microcompartments, are proteinaceous organelles that are associated with the breakdown of metabolites such as propanediol and ethanolamine. They are composed of an outer multi-component protein shell that encases a specific metabolic pathway. Protein cargo found within BMCs is directed by the presence of an encapsulation peptide that appears to trigger aggregation prior to the formation of the outer shell. We investigated the effect of three distinct encapsulation peptides on foreign cargo in a recombinant BMC system. Our data demonstrate that these peptides cause variation with respect to enzyme activity and protein aggregation. We observed that the level of protein aggregation generally correlates with the size of metabolosomes, while in the absence of cargo BMCs self-assemble into smaller compartments. The results agree with a flexible model for BMC formation based around the ability of the BMC shell to associate with an aggregate formed due to the interaction of encapsulation peptides

    Developing and enhancing biodiversity monitoring programmes: a collaborative assessment of priorities

    Get PDF
    1.Biodiversity is changing at unprecedented rates, and it is increasingly important that these changes are quantified through monitoring programmes. Previous recommendations for developing or enhancing these programmes focus either on the end goals, that is the intended use of the data, or on how these goals are achieved, for example through volunteer involvement in citizen science, but not both. These recommendations are rarely prioritized. 2.We used a collaborative approach, involving 52 experts in biodiversity monitoring in the UK, to develop a list of attributes of relevance to any biodiversity monitoring programme and to order these attributes by their priority. We also ranked the attributes according to their importance in monitoring biodiversity in the UK. Experts involved included data users, funders, programme organizers and participants in data collection. They covered expertise in a wide range of taxa. 3.We developed a final list of 25 attributes of biodiversity monitoring schemes, ordered from the most elemental (those essential for monitoring schemes; e.g. articulate the objectives and gain sufficient participants) to the most aspirational (e.g. electronic data capture in the field, reporting change annually). This ordered list is a practical framework which can be used to support the development of monitoring programmes. 4.People's ranking of attributes revealed a difference between those who considered attributes with benefits to end users to be most important (e.g. people from governmental organizations) and those who considered attributes with greatest benefit to participants to be most important (e.g. people involved with volunteer biological recording schemes). This reveals a distinction between focussing on aims and the pragmatism in achieving those aims. 5.Synthesis and applications. The ordered list of attributes developed in this study will assist in prioritizing resources to develop biodiversity monitoring programmes (including citizen science). The potential conflict between end users of data and participants in data collection that we discovered should be addressed by involving the diversity of stakeholders at all stages of programme development. This will maximize the chance of successfully achieving the goals of biodiversity monitoring programmes

    Climate Change Increases the Risk of Wildfires: January 2020

    Get PDF
    We undertook a ScienceBrief Review on the link between climate change and wildfire risk. 57 scientific articles were gathered and evaluated using ScienceBrief. This document synthesises the key points that emerged from the findings. Our review focuses on papers published since the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), with its cut-off date of March 2013. The papers can be viewed on sciencebrief.org/topics/climate-change-science/wildfires. All papers show linkages between climate change and increased frequency or severity of fire weather, though some note anomalies in isolated regions. None of the papers support a widespread decrease in fire risk

    Understanding and modelling wildfire regimes: An ecological perspective

    Get PDF
    © 2021 The Author(s).Recent extreme wildfire seasons in several regions have been associated with exceptionally hot, dry conditions, made more probable by climate change. Much research has focused on extreme fire weather and its drivers, but natural wildfire regimes—and their interactions with human activities—are far from being comprehensively understood. There is a lack of clarity about the 'causes' of wildfire, and about how ecosystems could be managed for the co-existence of wildfire and people. We present evidence supporting an ecosystem-centred framework for improved understanding and modelling of wildfire. Wildfire has a long geological history and is a pervasive natural process in contemporary plant communities. In some biomes, wildfire would be more frequent without human settlement; in others they would be unchanged or less frequent. A world without fire would have greater forest cover, especially in present-day savannas. Many species would be missing, because fire regimes have co-evolved with plant traits that resist, adapt to or promote wildfire. Certain plant traits are favoured by different fire frequencies, and may be missing in ecosystems that are normally fire-free. For example, post-fire resprouting is more common among woody plants in high-frequency fire regimes than where fire is infrequent. The impact of habitat fragmentation on wildfire crucially depends on whether the ecosystem is fire-adapted. In normally fire-free ecosystems, fragmentation facilitates wildfire starts and is detrimental to biodiversity. In fire-adapted ecosystems, fragmentation inhibits fires from spreading and fire suppression is detrimental to biodiversity. This interpretation explains observed, counterintuitive patterns of spatial correlation between wildfire and potential ignition sources. Lightning correlates positively with burnt area only in open ecosystems with frequent fire. Human population correlates positively with burnt area only in densely forested regions. Models for vegetation-fire interactions must be informed by insights from fire ecology to make credible future projections in a changing climate.We gratefully acknowledge support from the Leverhulme Centre for Wildfires, Environment and Society, who organized the virtual mini-workshop which initiated the writing of this paper. RKN is supported by the Leverhulme Centre. SPH and YS acknowledge support from the ERC-funded project GC2.0 (Global Change 2.0: Unlocking the past for a clearer future, Grant Number 694481). ICP, KJB and ND acknowledge support from the ERC-funded project REALM (Re-inventing Ecosystem And Land-surface Models, Grant Number 787203). JCH acknowledges funding from the ERC project SCATAPNUT (Grant Number 681885). This work is a contribution to the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program (SPH, YS and ICP)

    Time to integrate global climate change and biodiversity science‐policy agendas

    Get PDF
    Funder: Research EnglandFunder: Bertarelli FoundationAbstract: There is an increasing recognition that, although the climate change and biodiversity crises are fundamentally connected, they have been primarily addressed independently and a more integrated global approach is essential to tackle these two global challenges. Nature‐based Solutions (NbS) are hailed as a pathway for promoting synergies between the climate change and biodiversity agendas. There are, however, uncertainties and difficulties associated with the implementation of NbS, while the evidence regarding their benefits for biodiversity remains limited. We identify five key research areas where incomplete or poor information hinders the development of integrated biodiversity and climate solutions. These relate to refining our understanding of how climate change mitigation and adaptation approaches benefit biodiversity conservation; enhancing our ability to track and predict ecosystems on the move and/or facing collapse; improving our capacity to predict the impacts of climate change on the effectiveness of NbS; developing solutions that match the temporal, spatial and functional scale of the challenges; and developing a comprehensive and practical framework for assessing, and mitigating against, the risks posed by the implementation of NbS. Policy implications. The Conference of the Parties (COP) for the United Nations Framework Convention on Climate Change (COP26) and the Convention on Biological Diversity (COP15) present a clear policy window for developing coherent policy frameworks that align targets across the nexus of biodiversity and climate change. This window should (a) address the substantial and chronic underfunding of global biodiversity conservation, (b) remove financial incentives that negatively impact biodiversity and/or climate change, (c) develop higher levels of integration between the biodiversity and climate change agendas, (d) agree on a monitoring framework that enables the standardised quantification and comparison of biodiversity gains associated with NbS across ecosystems and over time and (e) rethink environmental legislation to better support biodiversity conservation in times of rapid climatic change

    Schindler’s legacy : from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria

    Get PDF
    David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms

    Time-resolved Raman spectroscopy of polaron formation in a polymer photocatalyst

    Get PDF
    Polymer photocatalysts are a synthetically diverse class of materials that can be used for the production of solar fuels such as H2, but the underlying mechanisms by which they operate are poorly understood. Time-resolved vibrational spectroscopy provides a powerful structure-specific probe of photogenerated species. Here we report the use of time-resolved resonance Raman (TR3) spectroscopy to study the formation of polaron pairs and electron polarons in one of the most active linear polymer photocatalysts for H2 production, poly(dibenzo[b,d]thiophene sulfone), P10. We identify that polaron-pair formation prior to thermalization of the initially generated excited states is an important pathway for the generation of long-lived photoelectrons
    corecore