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Abstract 

The targeting of proteins to bacterial microcompartments (BMCs) is mediated by a short peptide 

sequence of 18 amino acids. Herein, we report the solution structure of the N-terminal targeting 

peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol 

utilization metabolosome. The solution structure reveals the peptide to have a well defined-

helical conformation along its whole length. Saturation transfer difference and transferred NOE 

NMR has highlighted the observed interaction surface on the peptide with its main interacting 

protein, PduK, a component of the outer shell of the microcompartment. By tagging both a 

pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides it has been 

possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. 

Purification of the re-designed BMCs reveals that not only do they contain the ethanogenic 

enzymes but that they are able to transform pyruvate into ethanol efficiently.   
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Introduction 

Bacterial microcompartments (BMCs) are discrete metabolic units found in a range of bacteria 

that are dedicated to a specific metabolic pathway (1). They consist of a semi-permeable 

proteinaceous outer layer that encases enzymes associated with a particular process. The best 

characterized of the BMCs is the carboxysome, which is found in cyanobacteria and some 

chemoautotrophs (2-7). Here, the enzymes carbonic anhydrase and RuBisCo are retained 

within the confines of the macromolecular complex to provide an environment for enhanced 

carbon dioxide fixation. Other examples of the BMCs include the metabolosomes associated 

with both 1,2-propanediol and ethanolamine utilization (8-13). Of these the former has been the 

subject of greater investigation and characterization. 

The propanediol utilization (pdu) operon is composed of 23 genes (11, 14, 15) and encodes 

largely for proteins that form a supramolecular complex in the form of a metabolosome (13) with 

a diameter of between 100 and 150 nm. Six of the genes (pduABJKUT) encode for shell 

proteins that form hexameric tiles, which are envisaged to align together to form the facets  and 

edges of the outer casing of the structure (16-19). The vertices of the BMCs are thought to be 

formed from the pentameric PduN (7, 20). The shell proteins snare the enzymes for 1,2-

propanediol metabolism, including the diol dehydratase (PduCDE), and the alcohol and 

aldehyde dehydrogenases (PduP and Q) (8, 11). The metabolosome also houses enzymes for 

the repair and reactivation of the diol dehydratase (PduG, H) and its coenzyme (PduO, S), 

adenosylcobalamin (8, 11). The shell of the metabolosome has to allow the passage of its 

substrates, cofactors and coenzymes into the bacterial microcompartment as well as the exit of 

the metabolic products (18, 21, 22). This is likely mediated through the central pores that are 

formed within the tiles of the shell structure (16, 23). Other proteins are thought to interact with 

the shell proteins on the external surface of the structure, including PduV, which may help to 

localize the metabolosome within the cell (24). A summary of the proposed Pdu BMC is given in 

Figure 1. 

We have shown that it is possible to generate recombinant microcompartments in Escherichia 

coli, through the transposition of the whole pdu operon from Citrobacter freundii to generate fully 

functional metabolosomes (11). More recently it has also been reported that recombinant 

carboxysomes can be produced in E. coli (25). Through the coordinated production of just the 

Pdu shell proteins empty microcompartments can be constructed within the cell (24). A minimal 

set of shell proteins, PduABJKN, appears to be required for the assembly of empty 
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metabolosomes although slightly larger units are formed if PduU is included with the other shell 

proteins. Proteins can be targeted to these empty microcompartments by tagging them to other 

proteins that are found associated with the BMCs such as PduC, PduD and PduV (24). The 

potential therefore exists to generate new bioreactors within the molecular scaffold of a bacterial 

microcompartment (1) (Figure 1). 

Key to understanding how BMCs form is the localization of the metabolic enzymes to the inside 

of the structure. It is not known if the shell of the metabolosome forms around the metabolic 

enzymes or whether the enzymes are internalized after the initial assembly of the compartment. 

However, it is known that encapsulation of some of the enzymes is dependent upon the 

presence of a peptide targeting sequence (26, 27). The targeting sequence appears to be 

located on either the N- or C-terminal region of the internalized protein (28). However, the 

structural features associated with these interactions have yet to be determined. For proteins 

such as PduP and PduD this targeting sequence can be very short, comprising around 18 

amino acids (26, 27). Sequence analysis predicts that these targeting sequences are likely to be 

helical in nature. Herein, we provide the solution structure of the N-terminal 18 amino acids of 

PduP from C. freundii and show how this peptide sequence, together with a similar peptide from 

PduD, can be used to generate a simple ethanol bioreactor within a Pdu microcompartment 

shell by targeting the Zymomonas mobilis enzymes pyruvate decarboxylase (Pdc) and alcohol 

dehydrogenase (Adh) to the complex. 
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Results 

PduP interacts with PduK 

Previous research has shown that the N-terminal region of PduP is effective in targeting protein 

to the BMC (24, 27). In order to determine which of the shell proteins interact with PduP we 

conducted a series of pull-down assays in which PduP was co-produced in E. coli along with 

individual shell proteins harboring an N-terminal poly-histidine tag. Co-purification of PduP 

alongside a His-tagged shell protein following immobilized metal affinity chromatography (IMAC) 

is indicative of a protein-protein interaction and the formation of a tight complex. Using this 

method, we observed that PduP and PduK purified together (Supplementary Figure 1). PduK is 

known to be an abundant constituent of the shell and its interaction with the P18 peptide (the 

first 18 amino acids of the N-terminus of PduP) was further investigated. 

To determine the binding constant for the interaction between the P18 peptide and PduK we 

monitored the intrinsic tryptophan fluorescence of PduK, which contains only one tryptophan 

residue. Titration of P18 into a solution of PduK resulted in quenching of the fluorescence signal 

from the tryptophan. An equation describing a hyperbolic decay was fitted to the data yielding a 

Kd of 331 ± 64 nM (Supplementary Figure 2). This titration was further evidence of a strong 

interaction between P18 and PduK. Moreover, the Kd is in a range that is acquiescent for STD 

NMR (29).  

PduK (156 amino acids) is larger than shell proteins such as PduA, PduJ and PduU as it 

contains a C-terminal extension that has been speculated to house a Fe-S center (16). To 

investigate if P18 binds to the BMC domain within PduK or whether it interacts with the C-

terminal region of the protein a truncation of the protein was made that consisted only of the first 

96 amino acids. This truncated variant of PduK was also found to interact with P18 and with a 

similar Kd to the full-length protein. 

Solution structure of the P18 peptide 

The N-terminal region of PduP, which is responsible for the incorporation of the PduP enzyme 

into the lumen of the microcompartment, is suggested to be helical by both secondary structure 

prediction and CD spectroscopy (30). Since there is no crystal structure available for this region 

of PduP or its homologues we decided to solve the solution structure of the synthetic P18 

peptide using NMR spectroscopy. 
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The structure of the P18 peptide (NH3-MNTSELETLIRNLISEQL) was determined by 1H NMR in 

both the presence and absence of 30% (v/v) trifluoroethanol (TFE). Chemical shift assignments 

and through-space structural information were obtained from two-dimensional TOCSY and 

NOESY NMR experiments (Supplementary Table 1 and Supplementary Figure 3). The 

observed NOE contacts support the presence of an -helical conformation of the peptide with 

NOEs observed between H and HN (i–i+3) as well as H and H (i–i+3) in both the presence 

and absence of TFE (Supplementary Figures 2a and 4 and Supplementary Table 2). Calculated 

structures demonstrate the formation of a continuous -helix between residues 3-16 

(Supplementary Figure 4). This is despite assignable H-HN and H-H i-i+3 NOEs not being 

continuous across the entire range of the helix due to spectral overlap. The presence of 

additional side chain i–i+3 NOEs and weak H-HN i–i+4 NOEs confirm the continuity of the 

helix. It is important to note the helical nature of the peptide in the absence of TFE. The addition 

of TFE, which is typically used as a stabilizer to aid secondary structure formation in short 

peptides, reduces the length of the helix (residues 5-15) and increased flexibility of the termini 

when compared to P18 in the absence of TFE (Supplementary Figure 4). In this case, TFE has 

acted to destabilize the native structure of the P18 peptide. The dualities of TFE acting as both 

a stabilizer of secondary structure and also as a denaturant has been studied and documented 

(31). We suggest that the helical secondary structure element must be central to the process of 

recognition between the shell proteins and the PduP targeting sequence. 

Saturation transfer difference (STD) NMR 

The interaction between the P18 peptide and the shell protein PduK was investigated by 1D 

saturation transfer difference (STD) NMR (Supplementary Figure 5). This technique permits the 

detection of transient binding of a small molecule to a larger protein or receptor and can be used 

to determine molecular regions of the ligand that have primary contact and are most likely 

responsible for recognition and binding to the protein of interest. Due to spectral crowding it was 

not possible to obtain unambiguous STD values for all protons in the P18 peptide and only 

resonances that were not overlapping were used in the subsequent calculations and analysis. 

1H T1 and STD NMR contributions were obtained through correlation of signal intensity to 

specific nuclei from the peptide. STD factors were modified according to the T1 relaxation rate to 

provide a quantitative STD (qSTD) contribution (Supplementary Table 3). These values were 

displayed as percentage transfer compared to the maximum value (Figure 2c) and this data was 

mapped onto the calculated helical structure of the peptide (in the absence of TFE) to illustrate 

the observed interaction surface (Figures 2a and b). The residues with maximal STD factors 
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highlight the center of one face of the helix. A comparison of N- or C-terminal BMC-targeting 

sequences has highlighted a number of conserved hydrophobic residues (28). There would 

appear to be an apparent motif consisting of two hydrophobic residues followed by two polar 

residues followed by a further two hydrophobic residues. This represents the LIRNIL region in 

the middle of the P18 sequence and moreover the area with the highest STD values. 

Transfer NOE 

The conformation of the P18 peptide while bound to PduK was investigated by NMR using 

transferred NOEs (trNOE). The trNOE allows structural information to be gathered on a ligand in 

its bound state while appearing on the resonances of the free ligand. Transferred NOE 

experiments were carried out on samples containing 1 mM P18 peptide and 66 μM PduK. With 

approximately 15-fold excess of ligand and a moderate binding affinity, the peptide is in rapid 

exchange between free and bound states. NOEs indicative of the free state develop slowly. 

Thus, NOEs observed in the transferred NOE spectrum, at short mixing times, are indicative of 

the bound conformation of the peptide. 

At short mixing times (100 ms) the observed NOE contacts were almost identical to the control 

NOESY spectra obtained in the absence of PduK, which indicates that there is no structural 

change present upon binding. The major difference was an increased maximal NOE intensity 

and an increased rate of NOE build-up in the presence of the binding partner PduK (Figure 3). 

The increase in the rate of NOE build-up and intensity is due to the binding of the P18 peptide to 

the PduK protein, which enhances the cross relaxation rate due to the increase in the rotational 

correlation time. Our NMR data shows that the peptide adopts a helical conformation in solution 

and the combination of STD and trNOE data support that that this conformation is maintained 

while bound to the shell protein PduK. 

Fluorescein-labeled P18 as a reporter 

To visualize the interaction between the BMC shell and the P18 peptide we have used 

fluorescence microscopy. The P18 peptide does not contain any lysine residues and reaction 

with fluorescence isothiocyinate (FITC) produces a singularly labeled peptide at the N-terminal 

NH3 group that is easily purified in high yield. Empty microcompartments, consisting of the shell 

proteins PduABJKNU, which were either unlabeled or contained PduA labeled with the 

fluorescent mCherry tag were purified and incubated with the FITC labeled P18 peptide. 

Following centrifugation to pellet the BMCs and remove any unbound P18 the BMCs were 
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resuspended in buffer and visualized using a widefield microscope and optisplit (Cairn Research 

LTD) with appropriate filters (Supplementary Figure 8). Localization of green fluorescence was 

observed with the purified microcompartments. When the mCherry labeled compartments were 

used, co-localization of the two fluorophores was observed, confirming that the FITC-P18 

peptide is binding to the BMC shell. From these images it is not possible to determine if the 

peptide is binding to the outside or the inside of the BMCs. It is presumed that PduP must be 

located in the lumen and therefore unlikely to interact with the outside of the shell, however, it 

could be possible that the peptide is able to access the interior of the microcompartment 

through one of the pores formed by the shell proteins. Such pores are large enough to allow 

access to cofactors such as cobalamin, coenzyme A and NAD+. 

Internalization of a reporter protein using P18 

To probe the internalization of proteins fused to the signaling sequence PduP18 into a BMC at 

higher resolution we used a reporter protein that can be visualized by electron microscopy. 

Here, we fused the modified pea ascorbate peroxidase (APEX) (32) to the C-terminus of the P18 

peptide. APEX allows for high resolution imaging of subcellular structures containing the 

enzyme by its ability to catalyze the H2O2 dependent polymerization of diaminobenzidine, 

generating an insoluble precipitate that stains with OsO4. Thin sections of the strain producing 

the P18-APEX fusion protein and the shell proteins PduABJKNU were generated and viewed 

under TEM to reveal electron dense areas that match the shape and size of microcompartments 

(Figure 4) indicating that APEX is active when fused to P18 and that it is located internally within 

the BMC where it catalyzes DAB polymer formation. No similar electron dense areas were 

observed in sections of a control strain that contained the genes for the empty BMC and APEX 

without the P18 targeting peptide. The result suggests that both H2O2 and DAB are able to enter 

the BMC, where the polymerized product precipitates.  

Construction of an ethanol bioreactor 

To generate the proof of principle that it is possible to incorporate pathways not natively 

associated with microcompartments into recombinant empty bacterial Pdu microcompartments 

we chose to target the enzymes for the transformation of pyruvate to ethanol to an empty BMC. 

Ethanol production inside microcompartments requires the heterologous expression of pyruvate 

decarboxylase (pdc) and alcohol dehydrogenase (adh) and their targeting to the inside of the 

protein shell (Figure 1). In this study the pdc and adh are derived from the strictly anaerobic 

ethanogenic Gram-negative bacterium Z. mobilis. The pdc gene was cloned so as to allow it to 
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encode for an N-terminal fusion with the P18 targeting sequence. The adh gene was also 

initially cloned so as to encode a fusion with the first 18 amino acids of PduD (a D18 targeting 

sequence). Although the first 18 amino acids of PduD are sufficient for targeting proteins (26) 

we also decided to explore an extended PduD sequence to allow for more space between 

PduD18 and the enzyme and thus chose to fuse the first 60 amino acids of PduD to Adh. The 

secondary structure prediction and SWISS-MODEL results of C. freundii PduD indicated that 

the first 18 residues are followed predominantly by a coiled secondary structure. 

These constructs encoding the P18-Pdc D18-Adh, and P18-Pdc D60-Adh were investigated for 

their ability to target the enzymes efficiently to the BMC. The respective strains and their 

controls were cultured for 96 hours in LB medium supplemented with 4 % glucose. Growth rates 

and relative ethanol contents per OD600=1 were recorded. Our growth studies showed that the 

co-expression of the shell protein construct (pLysS-pduABJKNU) and pdc and adh (tagged and 

untagged) caused a growth delay up to 48 hours compared to strains that only produced pdc 

and adh and no genes for shell proteins. At 48 hours however, strains producing shell proteins 

had reached a similar OD600 as their control strains that did not produce shell proteins 

(Supplementary Figure 9). The ethanol production strains without shell protein construct 

produced similar amounts of ethanol (Pdc Adh: 36 ± 5 mM ethanol, P18-Pdc D18-Adh: 44 ± 11 

mM ethanol and P18-Pdc D60-Adh: 38 ± 1 mM ethanol). However, when shell proteins were co-

produced the two strains containing Pdc and Adh with signalling sequences produced more 

ethanol than the strain containing Pdc and Adh without signalling sequences (P18-Pdc D18-

Adh: 59 ± 4 mM ethanol and P18-Pdc D60-Adh: 46 ± 1 mM ethanol versus Pdc Adh: 38 ± 8 

mM) (Figure 5, Supplementary Figure 10). 

Increased ethanol production in strains producing enzymes with signalling sequences seemed 

to be dependent on the production of shell proteins. At 48 hours, when the shell proteins were 

most abundant (Supplementary Figure 10), strains producing shell proteins and either P18-Pdc 

D18-Adh or P18-Pdc D60-Adh increased sharply in ethanol content and produced more ethanol 

than the control strains producing shell proteins and Pdc Adh (Figure 5). SDS PAGE analysis 

also suggested that less P18-Pdc was present in strains that produced shell proteins compared 

to strains that did not produce shell proteins (Supplementary Figure 10). Thus, the enzymes 

(with and without signalling sequences) are functional and apparently similarly active in solution. 

However, when targeting Pdc and Adh to microcompartments ethanol production was improved 

suggesting the enzymes were more active when targeted to microcompartments than in 

solution.  
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Purification of recombinant bioreactors  

The activity of BMCs containing the Pdc and Adh were investigated by purifying the organelles. 

Bacteria containing the recombinant BMCs were lysed using Yeast Protein Extraction Reagent 

(YPER Plus) and the metabolosomes were separated from contaminating proteins on the basis 

of their differential solubility as described under microcompartment purification in the methods 

section. The solubility of the BMC appears to be dependent on the NaCl concentration of the 

buffer (Figure 6). Low salt content (20 mM NaCl) increased their solubility, whereas higher salt 

content (80 mM NaCl) lowered their solubility. Analysis of the final protein fraction of purified 

empty microcompartments using TEM and AFM confirmed the presence of apparently intact 

irregularly shaped polygonal recombinant microcompartments around 100 nm in diameter 

(Figures 7a and 7b). 

Although, not completely homogeneous, the purified microcompartment fraction was found to be 

enriched in shell proteins PduA, -B, -B′, -J, -K, -U when analyzed by SDS-PAGE (Figure 7c). 

PduN was not detectable in this profile, but as it is suspected to act as a vertex protein rather 

than making up the facets of the structure, it is likely to be present in only very small quantities.  

When untagged Pdc and Adh are produced in the presence of an empty BMC a small band at 

64 kDa is present in the protein profile of microcompartments from this strain (Figure 7c). This 

band corresponds to the theoretical mass of Pdc (no band corresponding to the theoretical 

mass of Adh is visible). This suggests that some Pdc is either incorporated into the BMC in the 

absence of a signaling sequence or that some denatured Pdc co-purifies with the 

metabolosome. 

Purified microcompartments from strains producing Adh and Pdc with signaling sequences 

(P18-Pdc D18-Adh and P18-Pdc D60-Adh) co-purified with Pdc and Adh proteins (Figure 7c) 

indicating that both Pdc and Adh were interacting with the BMC through their signaling 

sequences. To determine if the purification protocol was specific for microcompartments, 

untagged and tagged Adh and Pdc were purified in the absence of the shell proteins PduA, -B, -

B′, -J, -K, -U using the described purification method. No Adh or Pdc protein bands were 

detected in the final fraction of the purification (Supplementary Figure 11) suggesting that the 

Adh and Pdc can only be purified with microcompartments.  

A functional ethanol bioreactor 
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Purified microcompartments from the various strains were analyzed for their specific activity in 

the oxidation of NADH using a coupled assay that required both Pdc and Adh to be present and 

active (Figure 7d). Microcompartments from the strain containing the P18-Pdc and D60-Adh had 

the highest NADH oxidation activity of 215 nmol NADH oxidized min-1 mg-1, which was 

approximately 20 times higher than the specific activity of microcompartments extracted from 

cells producing untagged Adh and Pdc. Microcompartments purified from the strain producing 

the P18-Pdc and D60-Adh were twice as active as microcompartments from the strain 

producing P18-Pdc and D18-Adh. It is possible that the shorter PduD18 sequence might 

restrain Adh and thus lead to lower activity in vitro. To confirm that ethanol is produced by the 

BMCs they were incubated overnight with pyruvate, NADH, thiamine pyrophosphate and MgCl2 

and the amount of ethanol was determined by GC-MS. Similar ethanol levels were detected in 

incubations containing microcompartments from the P18-Pdc D60-Adh strain (34 ± 3.4 mM) and 

the P18-Pdc D18-Adh strain (36 ± 0.2 mM), corresponding to turnovers of 68 % and 72 % 

respectively. Microcompartments from the strain containing untagged Pdc and Adh produced 

also some ethanol (23 ± 1.1 mM ethanol, 46 % turnover), which was probably due to some 

contaminating protein present in the purified sample. Microcompartments purified from the 

control strain without Pdc and Adh did not produce detectable levels of ethanol. 
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Discussion 

The structure of the N-terminal region of PduP, P18, has been determined by NMR, revealing a 

strong helical structure. This structure is preformed and does not involve any induced fit with its 

binding partner (PduK) indicating a more general rather than a specific form of interaction. The 

fact that no structural change is required for binding suggests that the peptide adopts this 

conformation to reduce the entropic barrier for the interaction. Saturation transfer difference 

NMR has highlighted that one face of the helix shows the greatest interaction, involving several 

conserved hydrophobic residues. In particular the LIRNIL region contains the major molecular 

recognition features that allow for interaction with PduK. Our research has not identified the 

region of PduK to which the peptide binds. However, through analysis of C-terminal truncations 

we know that the binding region must lie in the N-terminal BMC domain between amino acids 1-

96. Predicative modeling has suggested the C-terminal helix in PduA from S. enterica is 

responsible for the interaction with the internalized protein, PduP (30). Similarly, the truncated 

PduK (PduK96) protein contains a homologous helix in this region that could be the potential 

site of interaction. However, molecular detail on the interaction between the shell and the 

proteins which are encapsulated will require high resolution structural data. 

We have demonstrated that PduP is able to interact with the shell protein PduK and shown that 

P18 can bind to PduK with an affinity in the sub micromolar range, consistent with tight binding. 

This level of binding explains how the proteins can interact but does not offer any insight into 

what happens to the targeted protein. Using isolated empty BMCs, which appear intact as 

viewed by TEM and AFM, addition of fluorescein-labeled P18 peptide results in localization of 

the peptide to the compartments in vitro. This likely reflects the strong interaction between P18 

and the shell of the recombinant microcompartment. Evidence that the P18 targeting sequence 

leads to sequestration of the protein to the inside of the microcompartment comes from in vivo 

analysis of cells producing P18-tagged to an engineered ascorbate peroxidase (APEX) (32). 

The APEX enzyme is able to polymerize diaminobenzidine to give an insoluble polymer that 

stains with OsO4 and therefore regions of the cells where APEX is present appear electron 

dense during imaging. Using this approach we have been able to show that dark regions of cell 

appear that are in agreement with the presence of BMCs, and consistent with the targeting and 

internalization of P18-tagged-APEX to the recombinant BMC. If the APEX was only associated 

with the outside of the BMC then we would have expected to see a darker staining around the 

periphery of the compartment. 
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It is not known how internalization of the P18-tagged protein occurs. One possibility, similar to 

the model suggested for carboxysome construction (4), is that a lattice of shell and P18-tagged 

protein forms simultaneously through interactions between P18 and PduK during assembly. It 

could also be that the targeting sequences encourage oligomerization around which the BMC 

forms. Alternatively, the targeting sequence could interact with a preformed BMC resulting in the 

inversion of a PduK-containing tile that results in the import of the tag-containing protein to the 

inside of the compartment. However, our data do not discriminate between these possibilities. 

We sought to see if the P18 targeting sequence could be used to direct a small pathway to an 

empty BMC as proof of concept that new pathways could be engineered into 

microcompartments. We sought to target a pyruvate decarboxylase and alcohol dehydrogenase 

to the BMC since this would allow for ethanol production. We found that the P18 sequence 

allowed for the targeting of the Z. mobilis Pdc to the BMC but strangely the P18 did not work 

well with the Z. mobilis Adh, as it was not possible to obtain a stable E. coli strain containing the 

shell protein construct and a P18-pdc P18-adh construct. We thus chose another targeting 

sequence, the N-terminal region of PduD and constructed two different tags, one of 18 amino 

acids (D18) and a longer one of 60 amino acids (D60). Both these sequences allowed for the 

targeting of Adh to the BMC. Although microcompartments isolated from the strain producing 

the longer sequence were more active in vitro they produced similar amount of ethanol as the 

BMCs containing the shorter D18-Adh. In vivo, the strain containing D60-Adh produced less 

ethanol than the D18-Adh strain. It is possible that the two signalling sequences lead to different 

levels of incorporation into microcompartments over time. By combining various constructs we 

were able to show that it is possible to direct both P18-Pdc and D18-Adh or D60-Adh to the 

same BMC and produce a microcompartment that has the ability to convert pyruvate into 

ethanol. Isolated microcompartments containing Pdc and Adh must be able to take up pyruvate 

and thiamine to be metabolically active, suggesting that there is a lack in specificity in the pores 

of the compartment. The compartment, does increase the ethanogenic potential for E. coli as 

the amount of ethanol produced by cells containing compartmentalized enzymes is higher than 

for cells expressing cytoplasmically-located enzymes. However, this is perhaps not surprising as 

the yield limitation in ethanogenic E. coli is thought to be Pdc and Adh enzyme toxicity to 

ethanol, so on this basis compartmentalization is unlikely to enhance ethanol production (33). 

In conclusion, we have determined the structure of a BMC-targeting peptide (P18) and identified 

its major recognition epitopes. We have shown how this peptide from PduP and a related 

peptide from PduD are able to target enzymes to a recombinant BMC. We have used a high-
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resolution ascorbate peroxidase (APEX) system to demonstrate that the P18 peptide results in 

the internalization of the protein cargo within the BMC and by using these targeting sequences 

we have generated a recombinant ethanol-producing bioreactor. This report therefore provides 

evidence that BMCs can be easily manipulated for the construction of new purposes and hold 

significant potential especially for processes that involve toxic intermediates. BMCs represent a 

subcellular compartment that is apposite for the redesign of biological processes. 
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Materials and Methods 

Bacterial strains and media 

Strains and plasmids used in this study are listed in Supplementary Table 4. E. coli JM109 was 

used for routine cloning procedures. E. coli strain BL21(DE3) was used for the expression of the 

genes for ethanol production (pdc and adhB from Z. mobilis) and the genes encoding the shell 

proteins PduA, B, B’, J, K, N, U. Strains were grown in Luria–Bertani (LB) medium 

supplemented with antibiotics (50 µg/ml ampicillin, 35 µg/ml chloramphenicol, chloramphenicol 

stock dissolved in methanol at 10 mg/ml) as needed. All strains were grown at 37  °C and 160 

r.p.m. Isolated colonies of E. coli strains were grown overnight in liquid medium and used as 

inoculum into fresh medium at a starting OD600=0.05, unless otherwise indicated. At OD600=0.8 

protein production was induced with 400 µM IPTG overnight at 18 ºC. Growth rates were 

recorded in a volume of 1 ml in 24 well plates (Greiner) using a BMG Labtech FLUOstar 

OPTIMA plate reader in absorbance mode at 600 nm for 40 hours.  

Pull down assays 

Pull down assays were conducted between PduP and the seven individual shell proteins. Two 

constructs were co-expressed in E. coli BL21(DE3). The first plasmid (pET14b) contained one 

of the shell proteins as an N-terminal his-tag fusion. The second plasmid (pLysS) contained the 

gene encoding PduP without any tag. The transformants were grown in 1L of Luria-Bertani 

medium to an OD600 of 0.8 when protein production was induced with 400 mM IPTG at 16 ºC 

overnight. The cells were harvested by centrifugation at 4,000 x g at 4 ºC for 10 minutes and 

resuspended in 10 ml of binding buffer (20 mM Tris-HCl pH 8.0, 0.5 M NaCl, 10 mM imidazole). 

The cells were lysed by sonication (six 30 seconds bursts, with 30 second cooling intervals on 

ice at an amplitude of 65 %) and insoluble debris removed by centrifugation at 37, 000 x g for 15 

minutes. The supernatant was applied to a chelating sepharose column charged with Ni2+. Once 

bound to the column, the crude extract was subjected to washes containing stepwise increases 

in imidazole concentration up to 400 mM. All wash fractions were analyzed by SDS-PAGE to 

confirm co-elution of the His-tagged and untagged proteins. The identities of the eluted proteins 

were confirmed by peptide mass fingerprinting. As a negative control, the His-tagged shell 

protein was omitted and under these conditions no PduP was present in the elution fractions (as 

determined by SDS-PAGE). 

NMR 
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Peptide structural NMR datasets were obtained at 283 K using a 14.1 T (600 MHz 1H) Bruker 

Avance III NMR spectrometer equipped with a QCI-F cryoprobe. All NMR samples were 330 μL 

within a Shigemi NMR tube and contained 1 mM P18 peptide in 20 mM potassium phosphate 

buffer at pH 7.0 containing 100 mM sodium chloride and 9% (v/v) deuterium oxide. NMR data 

processing was completed using TopSpin 3.1 (Bruker), assignments were completed using 

CCPN Analysis (34). Data sets for structural determination were collected in the absence and 

presence of 30 % (v/v) trifluroethanol-d3 (TFE). 1H chemical shifts and through-space structural 

assignments were obtained from two-dimensional TOCSY and NOESY NMR experiments with 

mixing times of 80 ms and 350 ms respectively (Supplementary Figure 3; Supplementary Table 

1). Structural ensembles were calculated using CNS (35) and included dihedral angles 

confirmed using DANGLE (36). The final ensemble of each structure was water-minimized using 

YASARA Structure software (available from http://www.yasara.org). Supplementary Table 2 

refinement statistics together with Supplementary Figures 6 and 7 confirm the precision and 

quality of each peptide structure. 

Standard 1H STD NMR experiments with a 3-9-19 WATERGATE were performed using 1 mM 

P18 peptide with 15 μM PduK in the same PBS buffer system used for structure calculations in 

the absence of TFE. Gaussian STD excitation pulses of 20 ms duration and a B1 of 140 Hz, 

were applied for 2 s at -3 ppm and -30 ppm for saturation and control respectively with on/off 

interleaved and extracted after the experiment (Supplementary Figure 5). The experiment, when 

repeated with saturation at +13 ppm and control at -30 ppm, produced the same overall result 

but at lower intensity due to reduced spin diffusion. 1H T1 relaxation time constants for the P18 

peptide were obtained using an inversion-recovery sequence that included a 3-9-19 

WATERGATE.  1H T1 values were then used to obtain quantitative STD NMR (qSTD) 

amplification factors using the GEM-CRL method described previously (37). Intensities for STD 

and T1 relaxation experiments obtained using Spectrus Processor (ACD Labs) 

2D trNOE spectra were measured at mixing times of 50, 100, 150, 200, 250, 300, 350 and 400 

ms using 1 mM P18 peptide and 66 μM PduK (15-fold ligand excess) in 20 mM potassium 

phosphate buffer at pH 7.0 containing 100 mM sodium chloride and 9% (v/v) deuterium oxide. 

Internalization of APEX using P18 

To probe internalization of a protein fused to PduP18 into recombinant microcompartments the 

electron microscopy (EM) reporter protein APEX (32) was fused to the C-terminus of PduP18 

(pET14b-pduP18-APEX). The control plasmid contained APEX alone (pET14b-APEX). APEX is 

http://www.yasara.org/
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a monomeric and activity enhanced mutant of pea ascorbate peroxidase and is expressed and 

reacted in live cells where it catalyzes the oxidative polymerization of diaminobenzidine (DAB) 

to generate a cross-linked and locally deposited precipitate. EM contrast is created when the 

DAB polymer is stained with electron dense OsO4. The protocol was adapted from Martell et al 

as follows. The E.coli strain BL21(DE3) was co-transformed with pLysS-pduABB’JKNU, the 

plasmid encoding the shell proteins that form empty microcompartments and pET14b-APEX or 

pET14b-pduP18-APEX. 10 ml LB starter cultures containing appropriate antibiotics and 1 colony 

were cultured for 6 hours at 37 ºC at 160 rpm and then inoculated into 50 ml 2YT at starting 

OD600=0.01. The strains were incubated for 16 hours at 37 ºC at 160 rpm and then harvested by 

centrifugation. 0.05 g of wet cells were washed 3 x 5 min in 1 ml of 100 mM sodium cacodylate, 

2 mM CaCl2, pH 7.4. The cells were re-suspended in 1 ml of freshly made solution of 0.5 mg/ml 

(1.4 mM) DAB tetrahydrochloride, combined with 0.03 % (v/v) H2O2 in chilled 100 mM sodium 

cacodylate, 2 mM CaCl2, pH 7.4. After 1 min incubation the cells were washed 3 x 5 min in 100 

mM sodium cacodylate, 2 mM CaCl2, pH 7.4 followed by 60 min fixation at room temperature in 

1 ml of 2% glutaraldehyde in 100 mM sodium cacodylate, 2 mM CaCl2, pH 7.4. The cells were 

washed 3 x 5 min in 1 ml chilled buffer, followed by post fixation staining with 2% osmium 

tetroxide for 60 min in chilled buffer. The cells were rinsed 3 x 5 min in chilled distilled water and 

placed in 30 % ethanol overnight at 4 ºC. The samples were dehydrated in a cold graded 

ethanol series, 10 min each (50%, 70%, 90%, 100%, 100%) and then washed once in room 

temperature anhydrous ethanol (to avoid condensation) followed by infiltration with LV resin 

(Agar Scientific): 1:1 (v/v) anhydrous ethanol and resin for 60 min. The cells were incubated 

twice in 100% LV resin for 1 hour and finally transferred into fresh resin and polymerized at 

60ºC for 16 hours. 85 nm sections were collected on 300 mesh copper grids and visualized 

under the TEM as described previously (24). 

Construction of plasmids for ethanol production 

Pdc was amplified by PCR using 5’-CATCATATGAGTTATACTGTCGG-3’ (forward primer) and 

5’-CATGAATTCAAAACTAGTCAGAGGAGCTTGTTAACAGGC-3’ (reverse primer) introducing 

restriction sites NdeI (5’) and SpeI and EcoRI (3’) (all underlined). Pdc was cloned via NdeI and 

EcoRI sites into a modified pET23b-P18 (pSF59) allowing for the fusion of P18 and the 5’ end of 

pdc, creating pSN5. Adh was amplified by PCR using 5’-

CACGAGCTCATGGCTTCTTCAACTTTTTATATTCC-3’ (forward primer) and 5’- 

CACGAATTCAAAACTAGTCAGAAAGCGCTCAGGAAGAGTTC-3’ (reverse primer) introducing 

restriction sites SacI (5’) and SpeI and EcoRI (3’). Adh was cloned via SacI and SpeI sites into 
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pET3a containing D18 and D60 signaling sequences allowing for the fusion of the 3’ end of D18 

or D60 and the 5’ end of adh, creating pSF61 and pSF63, respectively. Finally, two constructs 

were built housing D18-adh and P18-pdc (pSF64) and D60-adh and P18-pdc (pSF65). A 

plasmid with adh and pdc (pSN4) only was constructed as negative control. 

Solubility study of the shell proteins 

BL21(DE3) was transformed with pLysS-mCherry-pduA-BB’JKNU, the plasmid encoding the 

shell proteins that form empty microcompartments (24) with PduA fused to a red fluorescent 

mCherry tag. The strain was cultured and the cells lysed as described under section 

‘Microcompartment purification’. The cell lysate was aliquoted into eight 2 ml samples and 

centrifuged (5 min at 11,300 x g, 4 °C). The pellets were re-suspended in 1 ml 20 mM Tris-HCl, 

pH= 8.0 containing increasing concentrations of NaCl (0, 20, 40, 60, 80, 100, 200, 500 mM). 

The suspension was pelleted (5 min at 11,300 x g, 4 °C) and supernatants and pellets were 

collected and analyzed by SDS-PAGE. The mCherry tag allowed the visualization of the shell 

proteins. 

Microcompartment purification 

BL21(DE3) strains  containing genes for BMC formation were cultured in 200 ml LB medium 

and the cells were harvested by centrifugation for 10 minutes at 4 °C at 2683 x g. 1 g wet cell 

pellet was re-suspended in 10 ml YPER Plus (Pierce) supplemented with 1 tablet of Complete 

Protease Inhibitor Cocktail (Roche) and 1250 units Benzonase® Nuclease (YPB) and incubated 

for 3 hours at room temperature under gentle agitation.  

As outlined above we observed that the shell proteins varied in solubility depending on the salt 

concentration of the buffer they were re-suspended in. This property was used to separate the 

shell proteins from other proteins by subjecting the samples to varying salt concentrations as 

follows: The lysate was pelleted for 5 min at 11,300 x g (Beckman Coulter, rotor JA 25.50) and 

the microcompartment containing pellet was collected. The pellet was re-suspended in 2 ml 20 

mM Tris-HCl, pH 8.0, 20 mM NaCl. The suspension was centrifuged at 4 °C for 5 min at 11,000 

x g (Multispeed Refrigerated Centrifuge, ALC PK121R) and the supernatant which contained 

the solubilized microcompartments was collected. The NaCl concentration of the supernatant 

was raised to 80 mM by addition of 5 M NaCl. The microcompartments became insoluble and 

the cloudy solution was centrifuged at 4 °C for 5 min at 11,000 x g. The pellet with the 

microcompartments was collected, re-suspended in 1 ml of 20 mM Tris-HCl, pH 8.0 and finally 
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clarified by centrifugation (5 min at 11,000 x g). The final supernatant was collected for further 

analysis. 

EM and AFM 

For EM analysis 10 µl purified microcompartments were mounted onto formvar, carbon coated 

600 mesh copper grids for 2 minutes, followed by the addition of 20 µl 2.5 % (v/v) 

glutaraldehyde in PBS for 1 minute. The grids were washed three times in 20 µl drops of 2.5 % 

(v/v) glutaraldehyde in PBS, and then three times in water. Finally the grids were dried and 

stained with 2 % aqueous uranyl acetate. 

AFM images were collected on a Bruker Multimode 8 scanning probe microscope. Purified 

BMCs were deposited on a graphite substrate by incubating 20 µl of sample on a freshly 

cleaved HOPG surface for 5 min. The sample was then fixed using 2.5 % (v/v) glutaraldehyde in 

PBS, and dried with a gentle stream of N2 gas. Images were collected in air using the peak-

force tapping mode with peak-asyst air cantilever probe (Bruker) with a nominal spring constant 

of 0.4 N/m, and processed using the supplied Nanoscope software. 

Activity Assays 

The activities of Pdc and Adh were monitored spectrophotometrically by measuring the 

absorbance change at 340 nm due to the oxidation of NADH. The assay depended on the 

conversion of pyruvate to acetaldehyde, catalyzed by Pdc and required Adh as the coupling 

enzyme to facilitate NADH oxidation. The reaction was carried out at room temperature in 20 

mM Tris-HCl, pH 8.0. 1 ml reactions contained 5 mM pyruvate, 0.15 mM NADH, 5 mM MgCl2, 

0.1 mM thiamine pyrophosphate and 481 µg purified microcompartments. The reaction was 

started by addition of pyruvate and NADH and the rate of NADH oxidation was measured at 340 

nm. 

Analysis of ethanol production 

In vivo ethanol production was determined by analysis of the growth medium after culturing the 

strains. 500 ml LB cultures supplemented with 4 % glucose were cultured for 96 hours at 28 ºC, 

shaking at 160 rpm. 2 ml samples were taken for OD600 readings and GC analysis at 1, 2, 3, 4, 

5, 6, 10, 24, 48, 72 and 96 hours. Cells were removed by centrifugation and the growth medium 

subjected to GC-MS analysis.  
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Purified microcompartments were tested for their ability to convert pyruvate to ethanol by 

overnight incubation at room temperature in 1 ml reactions containing 50 mM pyruvate, 50 mM 

NADH, 50 mM MgCl2 and 1 mM thiamine pyrophosphate and 1.6 mg protein. The reactions 

were clarified by centrifugation for 10 minutes and the supernatant was filtered through a 

vivaspin column (molecular cut off 10,000 Da). The filtrate was analyzed for ethanol content by 

GC-MS.  

As commercial NADH (Sigma) contains traces of ethanol, NADH used in the reaction was 

produced using alternative published methods (38-40) by incubation of 0.03 M glucose, 0.015 M 

NAD+ and 35 U Glucose dehydrogenase in 0.05 M sodium bicarbonate, pH 7.5 at 37 ºC 

overnight. NADH was purified on DEAE in a 0-0.2 M ammonium bicarbonate gradient. After two 

cycles of rotary evaporation NADH was re-suspended in Millipore water.  
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Figure Legends 
 
Figure 1. Steps required for the conversion of the 1,2-propanediol utilization (Pdu) 
microcompartment into an ethanol bioreactor. The Pdu microcompartment shell is built from 
hexameric tiles composed of PduA, B, J, K, U and T (purple) that form the facets of the structure 
whereas pentameric tiles (PduN, cyan) form the vertices. 1,2-Propanediol enters the shell 
through pores in the shell proteins and is metabolized to propionyl-CoA (red box), which leaves 
the compartment and is further converted to propionate. Enzymes that are encapsulated within 
the metabolosome contain short signaling peptides. Changing the specificity of the Pdu 
microcompartment is achieved by stripping out the Pdu pathway and replacing it with the 
required pathway e.g. ethanol production (green box). Fusion of signaling peptides to the new 
pathway enzymes facilitates internalization of the heterologous proteins. Abbreviations used in 
figure: 1,2-PD = 1,2-propanediol, PA = propionaldehyde, P-OH = 1-propanol, PCoA = propionyl-
CoA, POI = protein of interest, SP = signalling peptide. 
 
Figure 2. Solution structure of the P18 peptide and illustration of its interaction surface. (a) 
Solution structure of the P18 peptide highlighting the residues with the highest qSTD factors for 
the interaction between the peptide and the shell protein PduK. (b) Structure of the P18 peptide 
showing the solvent accessible surface colored as a percentage of the maximum STD transfer 
to highlight significant interactions across the face of the helix. (c) Tabular representation of the 
relative qSTD amplification factors for the P18/PduK interaction. 
 
Figure 3. Transferred NOE build-up rates for the P18 peptide in the presence of PduK. Various 
NOE build-up curves for the P18 peptide in the absence (empty triangle) and presence (filled 
triangle) of PduK. (a) 4SerH to 3ThrH, (b) 6LeuH to 3ThrHg2*,(c) 6LeuH to 3ThrHa, (d) 8ThrH to 
5GluHa, (e) 12AsnH to 13IleH, (f) 16GluHga to 13IleHg2*. The peptide to protein ratio is 15:1. 
 
Figure 4. Internalization of an EM reporter protein using P18. Transmission electron microscopy 
images of thin sections of E. coli BL21(DE3) carrying the genes for an empty microcompartment 
(pduABJKNU) and the EM reporter protein APEX fused to P18 (top), APEX (middle) or P18-Pdc 
(bottom). Before embedding live cells were treated with DAB, the substrate for APEX, followed 
by staining with OsO4. Sections of the P18-APEX strain show patches of electron density that 
match the size and shape of microcompartments indicating that APEX is internalized (right). 
These are not present in the APEX and P18-Pdc expressing strains. Scale bar is 0.5 µm. 
 
Figure 5. In vivo ethanol production. The graph shows the ethanol content (mM) of the growth 
medium of E. coli strains producing shell proteins only (circle), shell proteins and untagged Pdc 
and Adh (triangles), shell proteins and tagged Pdc and Adh (P18-Pdc D18-Adh is represented 
by squares, P18-Pdc and D60-Adh is represented by diamonds). Ethanol concentration is 
normalized to OD600=1 and plotted from 6 to 96 hours. Ethanol content was determined in 
triplicates. 
 
Figure 6. Solubility of microcompartments with salt. To follow the microcompartments 
colorometrically PduA was tagged with mCherry and compartments composed of mCherry-
PduABB’JKNU were produced in BL21(DE3). The effect of NaCl concentration on the solubility 
of these colored isolated empty micrompartments was followed. After cell lysis in YPER Plus the 
lysate was centrifuged and the resulting pellet was resuspended in 20mM Tris-HCl (pH=8.0) 
containing 0 to 500 mM NaCl. The suspension was centrifuged again resulting in supernatant 
and pellet fractions, which were then analysed by SDS-PAGE. Between 0 - 40 mM and at 500 
mM NaCl the microcompartment proteins are soluble and are found in the supernatant fraction. 
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Between 60-200 mM NaCl the microcompartments are less soluble and are found in the pellet 
fraction.  
 
Figure 7. Isolation of recombinant bioreactors and determination of activity. (a) TEM and (b) 
AFM (peak force error) images of isolated empty microcompartments (PduABB’JKNU) showing 
how they purify as intact units (scale bar 100 nm). (c) SDS page loaded with 10 µg 
microcompartments purified from four strains co-producing PduA, B, B’, J, K, N, U and either no 
enzymes (shell only) or Pdc and Adh without signalling sequences (Pdc Adh) or P18-Pdc and 
D18-Adh or P18P-Pdc and D60-Adh. M is SDS7 marker. (d) Specific activity of Adh in nmol 
NADH oxidized min-1 mg-1. Activities were determined in triplicates with purified 
microcompartments isolated from the four strains described in panel c. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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