27 research outputs found

    SLU redovisar tre studier om effekter på virusnivåer

    Get PDF
    Varroakvalstret (Varroa destructor) är ett av de största hoten mot biodling världen över. Utan behandling dör angripna bisamhällen vanligtvis inom några år, men inte på grund av själva kvalsterangreppet i sig utan av de virusinfektioner som sprids med och utvecklas effektivare på grund av kvalstren. Många olika slags virus har hittats hos honungsbin, och några av dem är starkt knutna till varroakvalstret

    Results of international standardised beekeeper surveys of colony losses for winter 2012-2013 : analysis of winter loss rates and mixed effects modelling of risk factors for winter loss.

    Get PDF
    This article presents results of an analysis of winter losses of honey bee colonies from 19 mainly European countries, most of which implemented the standardised 2013 COLOSS questionnaire. Generalised linear mixed effects models (GLMMs) were used to investigate the effects of several factors on the risk of colony loss, including different treatments for Varroa destructor, allowing for random effects of beekeeper and region. Both winter and summer treatments were considered, and the most common combinations of treatment and timing were used to define treatment factor levels. Overall and within country colony loss rates are presented. Significant factors in the model were found to be: percentage of young queens in the colonies before winter, extent of queen problems in summer, treatment of the varroa mite, and access by foraging honey bees to oilseed rape and maize. Spatial variation at the beekeeper level is shown across geographical regions using random effects from the fitted models, both before and after allowing for the effect of the significant terms in the model. This spatial variation is considerable

    Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008-9 and 1009-10

    Get PDF
    In 2008 the COLOSS network was formed by honey bee experts from Europe and the USA. The primary objectives set by this scientific network were to explain and to prevent large scale losses of honey bee (Apis mellifera) colonies. In June 2008 COLOSS obtained four years support from the European Union from COST and was designated as COST Action FA0803 – COLOSS (Prevention of honey bee COlony LOSSes). To enable the comparison of loss data between participating countries, a standardized COLOSS questionnaire was developed. Using this questionnaire information on honey bee losses has been collected over two years. Survey data presented in this study were gathered in 2009 from 12 countries and in 2010 from 24 countries. Mean honey bee losses in Europe varied widely, between 7-22% over the 2008-9 winter and between 7-30% over the 2009-10 winter. An important finding is that for all countries which participated in 2008-9, winter losses in 2009-10 were found to be substantially higher. In 2009-10, winter losses in South East Europe were at such a low level that the factors causing the losses in other parts of Europe were absent, or at a level which did not affect colony survival. The five provinces of China, which were included in 2009-10, showed very low mean (4%) A. mellifera winter losses. In six Canadian provinces, mean winter losses in 2010 varied between 16-25%, losses in Nova Scotia (40%) being exceptionally high. In most countries and in both monitoring years, hobbyist beekeepers (1-50 colonies) experienced higher losses than practitioners with intermediate beekeeping operations (51-500 colonies). This relationship between scale of beekeeping and extent of losses effect was also observed in 2009-10, but was less pronounced. In Belgium, Italy, the Netherlands and Poland, 2008-9 mean winter losses for beekeepers who reported ‘disappeared’ colonies were significantly higher compared to mean winter losses of beekeepers who did not report ‘disappeared’ colonies. Mean 2008-9 winter losses for those beekeepers in the Netherlands who reported symptoms similar to “Colony Collapse Disorder” (CCD), namely: 1. no dead bees in or surrounding the hive while; 2. capped brood was present, were significantly higher than mean winter losses for those beekeepers who reported ‘disappeared’ colonies without the presence of capped brood in the empty hives. In the winter of 2009-10 in the majority of participating countries, beekeepers who reported ‘disappeared’ colonies experienced higher winter losses compared with beekeepers, who experienced winter losses but did not report ‘disappeared’ colonies

    Standard survey methods for estimating colony losses and explanatory risk factors in Apis mellifera

    Get PDF
    This chapter addresses survey methodology and questionnaire design for the collection of data pertaining to estimation of honey bee colony loss rates and identification of risk factors for colony loss. Sources of error in surveys are described. Advantages and disadvantages of different random and non-random sampling strategies and different modes of data collection are presented to enable the researcher to make an informed choice. We discuss survey and questionnaire methodology in some detail, for the purpose of raising awareness of issues to be considered during the survey design stage in order to minimise error and bias in the results. Aspects of survey design are illustrated using surveys in Scotland. Part of a standardized questionnaire is given as a further example, developed by the COLOSS working group for Monitoring and Diagnosis. Approaches to data analysis are described, focussing on estimation of loss rates. Dutch monitoring data from 2012 were used for an example of a statistical analysis with the public domain R software. We demonstrate the estimation of the overall proportion of losses and corresponding confidence interval using a quasi-binomial model to account for extra-binomial variation. We also illustrate generalized linear model fitting when incorporating a single risk factor, and derivation of relevant confidence intervals

    Epidemiology of acute and chronic hepatitis B virus infection in Norway, 1992-2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Norway is classified as a low prevalence country for hepatitis B virus infection. Vaccination is only recommended for risk groups (intravenous drug users (IDUs), Men who have Sex with Men (MSM), immigrants and contacts of known carriers). We describe the epidemiology of reported cases of hepatitis B in Norway, during the years 1992-2009 in order to assess the validity of current risk groups and recommend preventive measures.</p> <p>Methods</p> <p>We used case based data from the national surveillance system on acute and chronic hepatitis B. The Norwegian Statistics Bureau provided population and migration data and the Norwegian Institute for Alcohol and Drug Research the estimated number of active IDUs between 2002-2007. Incidence rates (IR) and incidence rate ratios (IRR) for acute hepatitis B and notification rates (NR) and notification rate ratios (NRR) for chronic hepatitis B with 95% confidence intervals were calculated.</p> <p>Results</p> <p>The annual IR of acute hepatitis B ranged from 0.7/100,000 (1992) to 10.6/100,000 (1999). Transmission occurred mainly among IDUs (64%) or through sexual contact (24%). The risk of acquiring acute hepatitis B was highest in people aged 20-29 (IRR = 6.6 [3.3-13.3]), and in males (IRR = 2.4 [1.7-3.3]). We observed two peaks of newly reported chronic hepatitis B cases in 2003 and 2009 (NR = 17.6/100,000 and 17.4/100,000, respectively). Chronic hepatitis B was more likely to be diagnosed among immigrants than among Norwegians (NRR = 93 [71.9-120.6]), and among those 20-29 compared to those 50-59 (NRR = 5.2 [3.5-7.9]).</p> <p>Conclusions</p> <p>IDUs remain the largest risk group for acute hepatitis B. The observed peaks of chronic hepatitis B are related to increased immigration from high endemic countries and screening and vaccination of these groups is important to prevent further spread of infection. Universal screening of pregnant women should be introduced. A universal vaccination strategy should be considered, given the high cost of reaching the target populations. We recommend evaluating the surveillance system for hepatitis B as well as the effectiveness of screening and vaccinating immigrant populations.</p

    Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018–2019, and the effects of a new queen on the risk of colony winter loss

    Get PDF
    peer-reviewedThis article presents managed honey bee colony loss rates over winter 2018/19 resulting from using the standardised COLOSS questionnaire in 35 countries (31 in Europe). In total, 28,629 beekeepers supplying valid loss data wintered 738,233 colonies, and reported 29,912 (4.1%, 95% confidence interval (CI) 4.0–4.1%) colonies with unsolvable queen problems 79,146 (10.7%, 95% CI 10.5–10.9%) dead colonies after winter and 13,895 colonies (1.9%, 95% CI 1.8–2.0%) lost through natural disaster. This gave an overall colony winter loss rate of 16.7% (95% CI 16.4–16.9%), varying greatly between countries, from 5.8% to 32. 0%. We modelled the risk of loss as a dead/empty colony or from unresolvable queen problems and found that, overall, larger beekeeping operations with more than 150 colonies experienced significantly lower losses (p<0.001), consistent with earlier studies. Additionally, beekeepers included in this survey who did not migrate their colonies at least once in 2018 had significantly lower losses than those migrating (p<0.001). The percentage of new queens from 2018 in wintered colonies was also examined as a potential risk factor. The percentage of colonies going into winter with a new queen was estimated as 55.0% over all countries. Higher percentages of young queens corresponded to lower overall losses (excluding losses from natural disaster), but also lower losses from unresolvable queen problems, and lower losses from winter mortality (p<0.001). Detailed results for each country and overall are given in a table, and a map shows relative risks of winter loss at regional level

    Supplementary information for the article: Brodschneider, R.; Schlagbauer, J.; Arakelyan, I.; Ballis, A.; Brus, J.; Brusbardis, V.; Cadahía, L.; Charrière, J.-D.; Chlebo, R.; Coffey, M. F.; Cornelissen, B.; da Costa, C. A.; Danneels, E.; Danihlík, J.; Dobrescu, C.; Evans, G.; Fedoriak, M.; Forsythe, I.; Gregorc, A.; Johannesen, J.; Kauko, L.; Kristiansen, P.; Martikkala, M.; Martín-Hernández, R.; Mazur, E.; Mutinelli, F.; Patalano, S.; Raudmets, A.; Simon Delso, N.; Stevanovic, J.; Uzunov, A.; Vejsnæs, F.; Williams, A.; Gray, A. Spatial Clusters of Varroa Destructor Control Strategies in Europe. J Pest Sci 2022. https://doi.org/10.1007/s10340-022-01523-2.

    Get PDF
    Table S1. Utilized packages of the statistical software R version 4.0.4.Supplementary material for: [https://vet-erinar.vet.bg.ac.rs/handle/123456789/2469]Related to the published version: [https://vet-erinar.vet.bg.ac.rs/handle/123456789/2469

    Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey

    Get PDF
    Publication history: Accepted - 5 March 2018; Published online - 8 May 2018.In this short note we present comparable loss rates of honey bee colonies during winter 2016/2017 from 27 European countries plus Algeria, Israel and Mexico, obtained with the COLOSS questionnaire. The 14,813 beekeepers providing valid loss data collectively wintered 425,762 colonies, and reported 21,887 (5.1%, 95% confidence interval 5.0–5.3%) colonies with unsolvable queen problems and 60,227 (14.1%, 95% CI 13.8–14.4%) dead colonies after winter. Additionally we asked for colonies lost due to natural disaster, which made up another 6,903 colonies (1.6%, 95% CI 1.5–1.7%). This results in an overall loss rate of 20.9% (95% CI 20.6–21.3%) of honey bee colonies during winter 2016/2017, with marked differences among countries. The overall analysis showed that small operations suffered higher losses than larger ones (p < 0.001). Overall migratory beekeeping had no significant effect on the risk of winter loss, though there was an effect in several countries. A table is presented giving detailed results from 30 countries. A map is also included, showing relative risk of colony winter loss at regional level.The authors are also grateful to various national funding sources for their support of some of the monitoring surveys [including, in the Republic of Serbia, MPNTR-RS, through grant number III46002]. The authors acknowledge the financial support by the University of Graz for open access publication

    Spatial clusters of Varroa destructor control strategies in Europe

    Get PDF
    Publication history: Accepted - 18 May 2022; Published online - 29 June 2022Beekeepers have various options to control the parasitic mite Varroa destructor in honey bee colonies, but no empirical data are available on the methods they apply in practice. We surveyed 28,409 beekeepers maintaining 507,641 colonies in 30 European countries concerning Varroa control methods. The set of 19 diferent Varroa diagnosis and control measures was taken from the annual COLOSS questionnaire on honey bee colony losses. The most frequent activities were monitoring of Varroa infestations, drone brood removal, various oxalic acid applications and formic acid applications. Correspondence analysis and hierarchical clustering on principal components showed that six Varroa control options (not necessarily the most used ones) signifcantly contribute to defning three distinctive clusters of countries in terms of Varroa control in Europe. Cluster I (eight Western European countries) is characterized by use of amitraz strips. Cluster II comprises 15 countries from Scandinavia, the Baltics, and Central-Southern Europe. This cluster is characterized by long-term formic acid treatments. Cluster III is characterized by dominant usage of amitraz fumigation and formed by seven Eastern European countries. The median number of diferent treatments applied per beekeeper was lowest in cluster III. Based on estimation of colony numbers in included countries, we extrapolated the proportions of colonies treated with diferent methods in Europe. This suggests that circa 62% of colonies in Europe are treated with amitraz, followed by oxalic acid for the next largest percentage of colonies. We discuss possible factors determining the choice of Varroa control measures in the diferent clustersOpen access funding provided by University of Graz. The authors have no relevant financial or non-financial interests to disclose. COLOSS and its supporters had no influence on the study design or the decision to publish

    CSI pollen: diversity of honey bee collected pollen studied by citizen scientists

    Get PDF
    A diverse supply of pollen is an important factor for honey bee health, but information about the pollen diversity available to colonies at the landscape scale is largely missing. In this COLOSS study, beekeeper citizen scientists sampled and analyzed the diversity of pollen collected by honey bee colonies. As a simple measure of diversity, beekeepers determined the number of colors found in pollen samples that were collected in a coordinated and standardized way. Altogether, 750 beekeepers from 28 different regions from 24 countries participated in the two-year study and collected and analyzed almost 18,000 pollen samples. Pollen samples contained approximately six different colors in total throughout the sampling period, of which four colors were abundant. We ran generalized linear mixed models to test for possible effects of diverse factors such as collection, i.e., whether a minimum amount of pollen was collected or not, and habitat type on the number of colors found in pollen samples. To identify habitat effects on pollen diversity, beekeepers’ descriptions of the surrounding landscape and CORINE land cover classes were investigated in two different models, which both showed that both the total number and the rare number of colors in pollen samples were positively affected by ‘urban’ habitats or ‘artificial surfaces’, respectively. This citizen science study underlines the importance of the habitat for pollen diversity for bees and suggests higher diversity in urban areas
    corecore