246 research outputs found

    Size-selected agglomerates of SnO₂ nanoparticles as gas sensors

    No full text
    The effect of nanoparticle structure on gas sensing performance is investigated. Size-selected nanostructured SnO₂ agglomerate particles for gas sensors were made by scalable flame spray pyrolysis. These particles were polydisperse (up to 12μm in diameter) and consisted of primary particles of 10nm in grain and crystal size as measured by transmission electron microscopy, x-ray diffraction, and Berner low pressure impactor (BLPI). The effect of agglomerate size on thermal stability and sensing of ethanol vapor (4–100ppm) and CO (4–50ppm) was investigated by selecting nearly monodisperse fractions of these agglomerates by the BLPI. Sensor layers made with these size-fractionated agglomerates exhibited higher thermal stability and dramatically enhanced sensitivity for both analytes than layers made with polydisperse agglomerates. This is attributed to their aggregate (or hard agglomerate) structure exhibiting small sinter necks between their constituent primary particles of tin dioxide that had also a narrow size distribution as expected for particles generated in flames. Upon further sintering of these optimally sized, nanostructured agglomerates, grain and neck growth degraded their superior sensitivity, supporting the proposed mechanism of their enhanced sensitivity: optimal primary particle necking.Financial support was provided by ETH Zurich FEL-04 08-3, Finnish Academy, Tekes The Finnish National Technology Agency, and Nanoprim

    Multimineral nutritional supplements in a nano-CaO matrix

    Get PDF
    The fast dissolution of certain calcium-containing compounds makes them attractive carriers for trace minerals in nutritional applications, e.g., iron and zinc to alleviate mineral deficiencies in affected people. Here, CaO-based nanostructured mixed oxides containing nutritionally relevant amounts of Fe, Zn, Cu, and Mn were produced by one-step flame spray pyrolysis. The compounds were characterized by nitrogen adsorption, x-ray diffraction, (scanning) transmission electron microscopy, and thermogravimetric analysis. Dissolution in dilute acid (i.d.a.) was measured as an indicator of their in vivo bioavailability. High contents of calcium resulted in matrix encapsulation of iron and zinc preventing formation of poorly soluble oxides. For 3.6 ≤ Ca:Fe ≤ 10.8, Ca2Fe2O5 coexisted with CaO. For Ca/Zn compounds, no mixed oxides were obtained, indicating that the Ca/Zn composition can be tuned without affecting their solubility i.d.a. Aging under ambient conditions up to 225 days transformed CaO to CaCO3 without affecting iron solubility i.d.a. Furthermore, Cu and Mn could be readily incorporated in the nanostructured CaO matrix. All such compounds dissolved rapidly and completely i.d.a., suggesting good in vivo bioavailabilit

    Fluid Particle Accelerations in Fully Developed Turbulence

    Full text link
    The motion of fluid particles as they are pushed along erratic trajectories by fluctuating pressure gradients is fundamental to transport and mixing in turbulence. It is essential in cloud formation and atmospheric transport, processes in stirred chemical reactors and combustion systems, and in the industrial production of nanoparticles. The perspective of particle trajectories has been used successfully to describe mixing and transport in turbulence, but issues of fundamental importance remain unresolved. One such issue is the Heisenberg-Yaglom prediction of fluid particle accelerations, based on the 1941 scaling theory of Kolmogorov (K41). Here we report acceleration measurements using a detector adapted from high-energy physics to track particles in a laboratory water flow at Reynolds numbers up to 63,000. We find that universal K41 scaling of the acceleration variance is attained at high Reynolds numbers. Our data show strong intermittency---particles are observed with accelerations of up to 1,500 times the acceleration of gravity (40 times the root mean square value). Finally, we find that accelerations manifest the anisotropy of the large scale flow at all Reynolds numbers studied.Comment: 7 pages, 4 figure

    Facile meltPEGylation of flame-made luminescent Tb3+-doped yttrium oxide particles: hemocompatibility, cellular uptake and comparison to silica

    Get PDF
    Flame aerosol technology is a versatile method for scalable synthesis of nanoparticles. Since particles are produced and collected in a dry state, dispersibility and further functionalization could pose hurdles to their biomedical use. We report on a one-pot, scalable and robust procedure for the PEGylation of flame-made yttria and silica nanoparticles. We demonstrate improved colloidal stability, attenuated activation of blood coagulation and decreased uptake into phagocytic cells, all of which pave the way for facilitated biomedical use of flame-made oxide nanoparticles

    Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features

    Get PDF
    BACKGROUND: Human rhinoviruses, major precipitants of asthma exacerbations, induce lower airway inflammation and mediate angiogenesis. The purpose of this study was to assess the possibility that rhinoviruses may also contribute to the fibrotic component of airway remodeling. METHODS: Levels of basic fibroblast growth factor (bFGF) mRNA and protein were measured following rhinovirus infection of bronchial epithelial cells. The profibrotic effect of epithelial products was assessed by DNA synthesis and matrix metalloproteinase activity assays. Moreover, epithelial cells were exposed to supernatants from cultured peripheral blood mononuclear cells, obtained from healthy donors or atopic asthmatic subjects and subsequently infected by rhinovirus and bFGF release was estimated. bFGF was also measured in respiratory secretions from atopic asthmatic patients before and during rhinovirus-induced asthma exacerbations. RESULTS: Rhinovirus epithelial infection stimulated mRNA expression and release of bFGF, the latter being positively correlated with cell death under conditions promoting rhinovirus-induced cytotoxicity. Supernatants from infected cultures induced lung fibroblast proliferation, which was inhibited by anti-bFGF antibody, and demonstrated increased matrix metalloproteinase activity. Rhinovirus-mediated bFGF release was significantly higher in an in vitro simulation of atopic asthmatic environment and, importantly, during rhinovirus-associated asthma exacerbations. CONCLUSIONS: Rhinovirus infection induces bFGF release by airway epithelium, and stimulates stroma cell proliferation contributing to airway remodeling in asthma. Repeated rhinovirus infections may promote asthma persistence, particularly in the context of atopy; prevention of such infections may influence the natural history of asthma

    Antiproliferative effects of Tubi-bee propolis in glioblastoma cell lines

    Get PDF
    Propolis is a resin formed by a complex chemical composition of substances that bees collect from plants. Since ancient times, propolis has been used in folk medicine, due to its biological properties, that include antimicrobial, anti-inflammatory, antitumoral and immunomodulatory activities. Glioblastoma is the most common human brain tumor. Despite the improvements in GBM standard treatment, patients’ prognosis is still very poor. The aim of this work was to evaluate in vitro the Tubi-bee propolis effects on human glioblastoma (U251 and U343) and fibroblast (MRC-5) cell lines. Proliferation, clonogenic capacity and apoptosis were analyzed after treatment with 1 mg/mL and 2 mg/mL propolis concentrations for different time periods. Additionally, glioblastoma cell lines were submitted to treatment with propolis combined with temozolomide (TMZ). Data showed an antiproliferative effect of tubi-bee propolis against glioblastoma and fibroblast cell lines. Combination of propolis with TMZ had a synergic anti-proliferative effect. Moreover, propolis caused decrease in colony formation in glioblastoma cell lines. Propolis treatment had no effects on apoptosis, demonstrating a cytostatic action. Further investigations are needed to elucidate the molecular mechanism of the antitumor effect of propolis, and the study of its individual components may reveal specific molecules with antiproliferative capacity

    Antitumoral and antiangiogenic activity of Portuguese propolis in in vitro and in vivo models

    Get PDF
    Propolis, a natural product, has important biological properties, however, studies with Portuguese propolis are scarce. Thus, we aimed to characterize the chemical composition and the antitumoural and antiangiogenic activities of a sample from Pereiro (Portugal). The chemical profile of our propolis sample (P10.EE) is similar to the poplar propolis type. P10.EE decreased cell viability of different tumour cells, being less cytotoxic against non-tumoural cells. P10.EE decreased MDA-MB-231 and DU145 cell proliferation and migration, with cell cycle changes and increased cell death. The increased glucose consumption and lactate production in MDA-MB-231 cells is explained by an increased expression of different metabolism-related proteins. P10.EE induced a decrease in HBMEC cells total biomass and proliferation and decreased vessel sprouting in the chicken chorioallantoic membrane. Additionally, P10.EE potentiates paclitaxel effect in MDA-MB-231 and DU145 cells. Concluding, P10.EE can be a good candidate for cancer drug development since it affects different characteristics that dictate tumorigenesis.This work was supported by the Life and Health Sciences Research Institute, University of Minho, Portugal, and Fundacao para a Ciencia e Tecnologia (FCT) (SFRH/BD/5199712012 to V.M.G.), through Fundo Europeu de Desenvolvimento Regional-QREN-COMPETE, projects PTDC/AAC-CLI1098308/2008 and PTDC/AAC-CLI/11809212010 and also CERNAS (project PEst-OE/AGR/UI0681/2011)
    corecore