312 research outputs found

    Real time monitoring of the quiescent suspension polymerization of methyl methacrylate in microreactors—Part 1. A kinetic study by Raman spectroscopy and evolution of droplet size

    Get PDF
    This paper presents an experimental study on the polymerization of droplets of methyl methacrylate (MMA) in quiescent state using microreactors. The reaction kinetics was monitored by Raman spectroscopy, while the images of MMA droplets image were captured by CCD (charge-coupled device) camera within a microcapillary. Different experimental recipes were proposed with commercial initiators in order to compare the system performance with two types of initiators: monofunctional and bifunctional peroxides. It is shown in this paper that the Raman technique is able to monitor the reaction kinetics at different conditions. For the first time in the open literature it was possible to identify the evolution of the monomer droplets during polymerization to high conversions () in quiescent state. In addition, it was possible to identify three different stages during the polymerization reactions of MMA. Finally, it is shown that the dispersities () obtained with the bifunctional initiator were lower than 2, while the dispersities obtained with the monofunctional initiator were greater than 2

    Real time monitoring of the quiescent suspension copolymerization of vinyl chloride with methyl methacrylate in microreactors – Part 3. A kinetic study by raman spectroscopy and evolution of droplet size

    Get PDF
    This paper regards the experimental study on the polymerization of vinyl chloride droplets in quiescent state using microreactors. As presented in a previous work performed with methyl methacrylate monomer, this work presents results on the reaction kinetics of vinyl chloride (VCM) polymerization monitored by Raman spectroscopy and on the evolution of VCM droplets as captured by charge-coupled device (CCD) camera in a microcapillary. Different experimental recipes were proposed using commercial initiators in order to compare the system performance when initiated with monofunctional and bifunctional peroxides. For the first time in the open literature the evolution of VCM droplets is shown up to high conversions in quiescent state. It is also shown how the pressure drop can modify the PVC particle morphology at the end of polymerization. Finally, it is shown that the Raman technique is able to monitor the reaction kinetics at different conditions, being possible to identify four different characteristic stages during the vinyl chloride polymerization reactions

    Experience with short-period, small gap undulators at the SwissFEL aramis beamline

    Get PDF
    The SwissFEL Aramis beamline provides hard X-ray FEL radiation down to 1 Angström with 5.8 GeV and short period, 15mm, in-vacuum undulators (U15). To reach the maximum designed K-value of 1.8 the U15s have to be operated with vacuum gaps down to 3.0 mm. The thirteen-undulator modules are 4m long and each of them is equipped with a pair of permanent magnet quadrupoles at the two ends, aligned magnetically to the undulator axis. Optical systems and dedicated photon diagnostics are used to check the alignment and improve the K-value calibration. In this talk the main steps of the undulator commissioning will be recalled and a systematic comparison between the magnetic results and the electron and photon based measurements will be reported to highlight achievements and open issues.peer-reviewe

    Chemical diplomacy in male tilapia: urinary signal increases sex hormone and decreases aggression

    Get PDF
    Androgens, namely 11-ketotestosterone (11KT), have a central role in male fish reproductive physiology and are thought to be involved in both aggression and social signalling. Aggressive encounters occur frequently in social species, and fights may cause energy depletion, injury and loss of social status. Signalling for social dominance and fighting ability in an agonistic context can minimize these costs. Here, we test the hypothesis of a 'chemical diplomacy' mechanism through urinary signals that avoids aggression and evokes an androgen response in receiver males of Mozambique tilapia (Oreochromis mossambicus). We show a decoupling between aggression and the androgen response; males fighting their mirror image experience an unresolved interaction and a severe drop in urinary 11KT. However, if concurrently exposed to dominant male urine, aggression drops but urinary 11KT levels remain high. Furthermore, 11KT increases in males exposed to dominant male urine in the absence of a visual stimulus. The use of a urinary signal to lower aggression may be an adaptive mechanism to resolve disputes and avoid the costs of fighting. As dominance is linked to nest building and mating with females, the 11KT response of subordinate males suggests chemical eavesdropping, possibly in preparation for parasitic fertilizations.info:eu-repo/semantics/publishedVersio

    GHEP-ISFG collaborative exercise on mixture profiles of autosomal STRs (GHEP-MIX01, GHEP-MIX02 and GHEP-MIX03): results and evaluation

    Get PDF
    One of the main objectives of the Spanish and Portuguese-Speaking Group of the International Society for Forensic Genetics (GHEP-ISFG) is to promote and contribute to the development and dissemination of scientific knowledge in the area of forensic genetics. Due to this fact, GHEP-ISFG holds different working commissions that are set up to develop activities in scientific aspects of general interest. One of them, the Mixture Commission of GHEP-ISFG, has organized annually, since 2009, a collaborative exercise on analysis and interpretation of autosomal short tandem repeat (STR) mixture profiles. Until now, three exercises have been organized (GHEP-MIX01, GHEP-MIX02 and GHEP-MIX03), with 32, 24 and 17 participant laboratories respectively. The exercise aims to give a general vision by addressing, through the proposal of mock cases, aspects related to the edition of mixture profiles and the statistical treatment. The main conclusions obtained from these exercises may be summarized as follows. Firstly, the data show an increased tendency of the laboratories toward validation of DNA mixture profiles analysis following international recommendations (ISO/IEC 17025:2005). Secondly, the majority of discrepancies are mainly encountered in stutters positions (53.4%, 96.0% and 74.9%, respectively for the three editions). On the other hand, the results submitted reveal the importance of performing duplicate analysis by using different kits in order to reduce errors as much as possible. Regarding the statistical aspect (GHEP-MIX02 and 03), all participants employed the likelihood ratio (LR) parameter to evaluate the statistical compatibility and the formulas employed were quite similar. When the hypotheses to evaluate the LR value were locked by the coordinators (GHEP-MIX02) the results revealed a minor number of discrepancies that were mainly due to clerical reasons. However, the GHEP-MIX03 exercise allowed the participants to freely come up with their own hypotheses to calculate the LR value. In this situation the laboratories reported several options to explain the mock cases proposed and therefore significant differences between the final LR values were obtained. Complete information concerning the background of the criminal case is a critical aspect in order to select the adequate hypotheses to calculate the LR value. Although this should be a task for the judicial court to decide, it is important for the expert to account for the different possibilities and scenarios, and also offer this expertise to the judge. In addition, continuing education in the analysis and interpretation of mixture DNA profiles may also be a priority for the vast majority of forensic laboratories.Fil: Sala, Adriana Andrea. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Servicio de Huellas Digitales Genéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Crespillo, M.. Instituto Nacional de Toxicología y Ciencias Forenses; EspañaFil: Barrio, P. A.. Instituto Nacional de Toxicología y Ciencias Forenses; EspañaFil: Luque, J. A.. Instituto Nacional de Toxicología y Ciencias Forenses; EspañaFil: Alves, Cíntia. Universidad de Porto; PortugalFil: Aler, M.. Servicio de Laboratorio. Sección de Genética Forense y Criminalística; EspañaFil: Alessandrini, F.. Università Politecnica delle Marche. Department of Biomedical Sciences and Public Health; ItaliaFil: Andrade, L.. Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Centro. Serviço de Genética e Biologia Forenses; PortugalFil: Barretto, R. M.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bofarull, A.. Instituto Nacional de Toxicología y Ciencias Forenses; EspañaFil: Costa, S.. Instituto Nacional de Medicina Legal y Ciencias Forenses; PortugalFil: García, M. A.. Servicio de Criminalística de la Guardia Civil. Laboratorio Central de Criminalística. Departamento de Biología; EspañaFil: García, O.. Basque Country Police. Forensic Genetics Section. Forensic Science Unit; EspañaFil: Gaviria, A.. Cruz Roja Ecuatoriana. Laboratorio de Genética Molecular; EcuadorFil: Gladys, A.. Corte Suprema de Justicia de la Nación; ArgentinaFil: Gorostiza, A.. Grupo Zeltia. Genomica S. A. U.. Laboratorio de Identificación Genética; EspañaFil: Hernández, A.. Instituto Nacional de Toxicología y Ciencias Forenses; EspañaFil: Herrera, M.. Laboratorio Genda S. A.; ArgentinaFil: Hombreiro, L.. Jefatura Superior de Policía de Galicia. Brigada de Policía Científica. Laboratorio Territorial de Biología – ADN; EspañaFil: Ibarra, A. A.. Universidad de Antioquia; ColombiaFil: Jiménez, M. J.. Policia de la Generalitat – Mossos d’Esquadra. Divisió de Policia Científica. Àrea Central de Criminalística. Unitat Central de Laboratori Biològic; EspañaFil: Luque, G. M.. Instituto Nacional de Toxicología y Ciencias Forenses; EspañaFil: Madero, P.. Centro de Análisis Genéticos; EspañaFil: Martínez Jarreta, B.. Universidad de Zaragoza; EspañaFil: Masciovecchio, M. Verónica. IACA Laboratorios; ArgentinaFil: Modesti, Nidia Maria. Provincia de Córdoba. Poder Judicial; ArgentinaFil: Moreno, F.. Servicio Médico Legal. Unidad de Genética Forense; ChileFil: Pagano, S.. Dirección Nacional de Policía Técnica. Laboratorio de Análisis de ADN para el CODIS; UruguayFil: Pedrosa, S.. Navarra de Servicios y Tecnologías S. A. U.; EspañaFil: Plaza, G.. Neodiagnostica S. L.; EspañaFil: Prat, E.. Comisaría General de Policía Científica. Laboratorio de ADN; EspañaFil: Puente, J.. Laboratorio de Genética Clínica S. L.; EspañaFil: Rendo, F.. Universidad del País Vasco; EspañaFil: Ribeiro, T.. Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação Sul. Serviço de Genética e Biologia Forenses; PortugalFil: Santamaría, E.. Instituto Nacional de Toxicología y Ciencias Forenses; EspañaFil: Saragoni, V. G.. Servicio Médico Legal. Departamento de Laboratorios. Unidad de Genética Forense; ChileFil: Whittle, M. R.. Genomic Engenharia Molecular; Brasi

    Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

    Get PDF
    We present galaxy-galaxy lensing results from 139 deg2 of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise ratio of 29 over scales 0.09 < R < 15 Mpc h-1, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, NGMIX and IM3SHAPE. We perform a number of null tests on the shear and photometric redshift catalogues and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The result and systematic checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a halo occupation distribution (HOD) model, and demonstrate that our data constrain the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters

    Dark energy survey year 1 results: the relationship between mass and light around cosmic voids

    Get PDF
    What are the mass and galaxy profiles of cosmic voids? In this paper, we use two methods to extract voids in the Dark Energy Survey (DES) Year 1 redMaGiC galaxy sample to address this question. We use either 2D slices in projection, or the 3D distribution of galaxies based on photometric redshifts to identify voids. For the mass profile, we measure the tangential shear profiles of background galaxies to infer the excess surface mass density. The signal-to-noise ratio for our lensing measurement ranges between 10.7 and 14.0 for the two void samples. We infer their 3D density profiles by fitting models based on N-body simulations and find good agreement for void radii in the range 15–85 Mpc. Comparison with their galaxy profiles then allows us to test the relation between mass and light at the 10 per cent level, the most stringent test to date. We find very similar shapes for the two profiles, consistent with a linear relationship between mass and light both within and outside the void radius. We validate our analysis with the help of simulated mock catalogues and estimate the impact of photometric redshift uncertainties on the measurement. Our methodology can be used for cosmological applications, including tests of gravity with voids. This is especially promising when the lensing profiles are combined with spectroscopic measurements of void dynamics via redshift-space distortions

    DeepZipper. II. Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning

    Get PDF
    Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain 5-10 LSNe in total while next-generation experiments are expected to contain several hundred to a few thousand of these systems. We search for these systems in observed Dark Energy Survey (DES) five year SN fields—10 3 sq. deg. regions of sky imaged in the griz bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains an LSN recall of 61.13% and a false-positive rate of 0.02% on the DES SN field data. DeepZipper selected 2245 candidates from a magnitude-limited (m i < 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields

    The Observed Evolution of the Stellar Mass-Halo Mass Relation for Brightest Central Galaxies

    Get PDF
    We quantify evolution in the cluster-scale stellar mass–halo mass (SMHM) relation's parameters using 2323 clusters and brightest central galaxies (BCGs) over the redshift range 0.03 ≤ z ≤ 0.60. The precision on the inferred SMHM parameters is improved by including the magnitude gap (mgap) between the BCG and fourth-brightest cluster member (M14) as a third parameter in the SMHM relation. At fixed halo mass, accounting for mgap, through a stretch parameter, reduces the SMHM relation's intrinsic scatter. To explore this redshift range, we use clusters, BCGs, and cluster members identified using the Sloan Digital Sky Survey C4 and redMaPPer cluster catalogs and the Dark Energy Survey redMaPPer catalog. Through this joint analysis, we detect no systematic differences in BCG stellar mass, mgap, and cluster mass (inferred from richness) between the data sets. We utilize the Pareto function to quantify each parameter's evolution. We confirm prior findings of negative evolution in the SMHM relation's slope (3.5σ), and detect negative evolution in the stretch parameter (4.0σ) and positive evolution in the offset parameter (5.8σ). This observed evolution, combined with the absence of BCG growth, when stellar mass is measured within 50 kpc, suggests that this evolution results from changes in the cluster's mgap. For this to occur, late-term growth must be in the intracluster light surrounding the BCG. We also compare the observed results to IllustrisTNG 300-1 cosmological hydrodynamic simulations and find modest qualitative agreement. However, the simulations lack the evolutionary features detected in the real data

    DES Y1 results: validating cosmological parameter estimation using simulated dark energy surveys

    Get PDF
    FINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESWe use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year 1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar analysis tools are applied to both simulations and real survey data, they provide powerful validation tests of the DES Y1 cosmological analyses presented in companion papers. We use two suites of galaxy simulations produced using different methods, which therefore provide independent tests of our cosmological parameter inference. The cosmological analysis we aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point correlation functions of galaxy number counts and weak lensing shear, as well as their cross-correlation, in multiple redshift bins. While our constraints depend on the specific set of simulated realisations available, for both suites of simulations we find that the input cosmology is consistent with the combined constraints from multiple simulated DES Y1 realizations in the Omega(m) - sigma(8) plane. For one of the suites, we are able to show with high confidence that any biases in the inferred S-8 = sigma(8)(Omega(m)/0.3)(0.5) and Omega(m) are smaller than the DES Y1 1 - sigma uncertainties. For the other suite, for which we have fewer realizations, we are unable to be this conclusive; we infer a roughly 60 per cent (70 per cent) probability that systematic bias in the recovered Omega(m) (S-8) is sub-dominant to the DES Y1 uncertainty. As cosmological analyses of this kind become increasingly more precise, validation of parameter inference using survey simulations will be essential to demonstrate robustness.480446144635FINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESSem informaçãoSem informação465376/2014-2Sem informaçãoAgências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig
    corecore