44 research outputs found

    Chronic TLR stimulation controls NLRP3 inflammasome activation through IL-10 mediated regulation of NLRP3 expression and caspase-8 activation

    Get PDF
    While the molecular mechanisms promoting activation of the Nod-like Receptor (NLR) family member NLRP3 inflammasome are beginning to be defined, little is known about the mechanisms that regulate the NLRP3 inflammasome. Acute (up to 4 hours) LPS stimulation, followed by ATP is frequently used to activate the NLRP3 inflammasome in macrophages. Interestingly, we observed that the ability of LPS to license NLRP3 is transient, as prolonged (12 to 24 hours) LPS exposure was a relatively ineffective priming stimulus. This suggests that relative to acute LPS, chronic LPS exposure triggers regulatory mechanisms to dampen NLRP3 activation. Transfer of culture supernatants from macrophages stimulated with LPS for 24 hours dramatically reduced ATP- and nigericin-induced NLRP3 inflammasome activation in naive macrophages. We further identified IL-10 as the secreted inflammasome-tolerizing factor that acts in an autocrine manner to control activation of the NLRP3 inflammasome. Finally, we demonstrated that IL-10 dampens NLRP3 expression to control NLRP3 inflammasome activation and subsequent caspase-8 activation. In conclusion, we have uncovered a mechanism by which chronic, but not acute, LPS exposure induces IL-10 to dampen NLRP3 inflammasome activation to avoid overt inflammation

    Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection

    Get PDF
    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida. Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRP ML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell

    Scaling Up Safer Birth Bundle Through Quality Improvement in Nepal (SUSTAIN) - A stepped wedge cluster randomized controlled trial in public hospitals

    Get PDF
    Background: Each year, 2.2 million intrapartum-related deaths (intrapartum stillbirths and first day neonatal deaths) occur worldwide with 99% of them taking place in low- and middle-income countries. Despite the accelerated increase in the proportion of deliveries taking place in health facilities in these settings, the stillborn and neonatal mortality rates have not reduced proportionately. Poor quality of care in health facilities is attributed to two-thirds of these deaths. Improving quality of care during the intrapartum period needs investments in evidence-based interventions. We aim to evaluate the quality improvement packageScaling Up Safer Bundle Through Quality Improvement in Nepal (SUSTAIN)on intrapartum care and intrapartum-related mortality in public hospitals of Nepal. Methods: We will conduct a stepped wedge cluster randomized controlled trial in eight public hospitals with each having least 3000 deliveries a year. Each hospital will represent a cluster with an intervention transition period of 2months in each. With a level of significance of 95%, the statistical power of 90% and an intra-cluster correlation of 0.00015, a study period of 19months should detect at least a 15% change in intrapartum-related mortality. Quality improvement training, mentoring, systematic feedback, and a continuous improvement cycle will be instituted based on bottleneck analyses in each hospital. All concerned health workers will be trained on standard basic neonatal resuscitation and essential newborn care. Portable fetal heart monitors (Moyo (R)) and neonatal heart rate monitors (Neobeat (R)) will be introduced in the hospitals to identify fetal distress during labor and to improve neonatal resuscitation. Independent research teams will collect data in each hospital on intervention inputs, processes, and outcomes by reviewing records and carrying out observations and interviews. The dose-response effect will be evaluated through process evaluations. Discussion: With the global momentum to improve quality of intrapartum care, better understanding of QI package within a health facility context is important. The proposed package is based on experiences from a similar previous scale-up trial carried out in Nepal. The proposed evaluation will provide evidence on QI package and technology for implementation and scale up in similar settings

    Effect of the COVID-19 pandemic response on intrapartum care, stillbirth, and neonatal mortality outcomes in Nepal: a prospective observational study

    Get PDF
    BACKGROUND: The COVID-19 pandemic response is affecting maternal and neonatal health services all over the world. We aimed to assess the number of institutional births, their outcomes (institutional stillbirth and neonatal mortality rate), and quality of intrapartum care before and during the national COVID-19 lockdown in Nepal. METHODS: In this prospective observational study, we collected participant-level data for pregnant women enrolled in the SUSTAIN and REFINE studies between Jan 1 and May 30, 2020, from nine hospitals in Nepal. This period included 12·5 weeks before the national lockdown and 9·5 weeks during the lockdown. Women were eligible for inclusion if they had a gestational age of 22 weeks or more, a fetal heart sound at time of admission, and consented to inclusion. Women who had multiple births and their babies were excluded. We collected information on demographic and obstetric characteristics via extraction from case notes and health worker performance via direct observation by independent clinical researchers. We used regression analyses to assess changes in the number of institutional births, quality of care, and mortality before lockdown versus during lockdown. FINDINGS: Of 22 907 eligible women, 21 763 women were enrolled and 20 354 gave birth, and health worker performance was recorded for 10 543 births. From the beginning to the end of the study period, the mean weekly number of births decreased from 1261·1 births (SE 66·1) before lockdown to 651·4 births (49·9) during lockdown-a reduction of 52·4%. The institutional stillbirth rate increased from 14 per 1000 total births before lockdown to 21 per 1000 total births during lockdown (p=0·0002), and institutional neonatal mortality increased from 13 per 1000 livebirths to 40 per 1000 livebirths (p=0·0022). In terms of quality of care, intrapartum fetal heart rate monitoring decreased by 13·4% (-15·4 to -11·3; p&lt;0·0001), and breastfeeding within 1 h of birth decreased by 3·5% (-4·6 to -2·6; p=0·0032). The immediate newborn care practice of placing the baby skin-to-skin with their mother increased by 13·2% (12·1 to 14·5; p&lt;0·0001), and health workers' hand hygiene practices during childbirth increased by 12·9% (11·8 to 13·9) during lockdown (p&lt;0·0001). INTERPRETATION: Institutional childbirth reduced by more than half during lockdown, with increases in institutional stillbirth rate and neonatal mortality, and decreases in quality of care. Some behaviours improved, notably hand hygiene and keeping the baby skin-to-skin with their mother. An urgent need exists to protect access to high quality intrapartum care and prevent excess deaths for the most vulnerable health system users during this pandemic period.De två sista författarna delar sistaförfattarskapet</p

    NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    Get PDF
    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases

    Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection

    Get PDF
    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida. Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRP ML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell

    Regulation of immune responses by apoptotic cells

    No full text
    Billions of cells die everyday as a result of normal tissue turnover, infection, trauma or injury. These dead cells are taken up, processed and presented to T cells by antigen presenting cells resulting in tolerance or immunity. Apoptotic cells induce tolerance; however, the precise mechanisms are still unknown. Previous studies have shown that direct infusion of apoptotic cells induce tolerance mediated by TRAIL-expressing CD8+ T cells. We hypothesized that immunologic tolerance induced by apoptotic cells is dependent on the activation status of apoptotic cells and mediated by direct killing of target cells by TRAIL-expressing CD8+ T cells. Three different experimental systems were used to elucidate the mechanisms by which apoptotic cells regulate immune responses. Using a classical system of tolerance induction, we examined the immunological consequence of intravenous (i.v.) delivery of ex vivo-generated naïve or activated apoptotic cells. Naïve apoptotic cells induced tolerance when injected i.v.; however, previously activated apoptotic cells induced immunity. Further analysis revealed a key role for CD154 in the tolerogenic or immunogenic nature of the naïve or activated apoptotic cells, respectively, as tolerance resulted after i.v. injection of either naïve or activated apoptotic CD154-/- cells, while co-injection of an agonistic anti-CD40 mAb with naïve apoptotic T cells induced robust immunity. The infusion of large numbers of apoptotic cells has limited physiological relevance, so the investigation of the influence of apoptotic cells on the immune system turned to another experimental tolerance model where soluble peptide antigen is injected systemically to induce the peripheral deletion of a population of antigen-specific T cells. Using this system, we investigated how apoptotic cells generated in vivo leads to T cell tolerance. Following adoptive transfer of OT-II cells, wild-type mice injected with soluble OVA323-339 became unresponsive to subsequent CFA/OVA immunization. Interestingly, Trail-/- or Dr5 -/- mice developed robust immunity; even though all strains displayed peripheral deletion of OVA-specific T cells. Subsequent investigation found the mechanism of action of the CD8+ T cells was TRAIL-mediated deletion of the OVA-responsive T cells in a TCR-specific manner. The experimental systems used above have some clinical relevance but are still not physiologic. To study the impact of apoptotic cells in a physiologic setting, we took advantage of the medical condition sepsis, which is accompanied by massive apoptosis of multiple immune cell populations. Thus, the final set of experiments in this thesis examined the tolerance induced during sepsis using a clinically-relevant cecal-ligation and puncture (CLP) model that included a secondary bacterial infection. CLP-treated WT mice had a reduced ability to control the secondary bacterial infection, which was paralleled by suppressed T cell responses, compared to sham-treated WT mice. In contrast, CLP- and sham-treated Trail-/- and Dr5 -/- mice were able to similarly control the bacterial infection and generated bacterial antigen-specific T cell responses. The ability of CLP-treated wild-type mice to control the secondary infection and generate T cell immunity could be restored by the administration of a blocking anti-TRAIL mAb. These results suggest the importance of TRAIL in the induction of sepsis-induced immune suppression, such that TRAIL neutralization may be a potential therapeutic target to restore cellular immunity in septic patients

    Recent Advances in Lipopolysaccharide Recognition Systems

    No full text
    Lipopolysaccharide (LPS), commonly known as endotoxin, is ubiquitous and the most-studied pathogen-associated molecular pattern. A component of Gram-negative bacteria, extracellular LPS is sensed by our immune system via the toll-like receptor (TLR)-4. Given that TLR4 is membrane bound, it recognizes LPS in the extracellular milieu or within endosomes. Whether additional sensors, if any, play a role in LPS recognition within the cytoplasm remained unknown until recently. The last decade has seen an unprecedented unfolding of TLR4-independent LPS sensing pathways. First, transient receptor potential (TRP) channels have been identified as non-TLR membrane-bound sensors of LPS and, second, caspase-4/5 (and caspase-11 in mice) have been established as the cytoplasmic sensors for LPS. Here in this review, we detail the brief history of LPS discovery, followed by the discovery of TLR4, TRP as the membrane-bound sensor, and our current understanding of caspase-4/5/11 as cytoplasmic sensors

    Cutting edge: SHARPIN is required for optimal NLRP3 inflammasome activation

    No full text
    The NLRP3 inflammasome is a multimeric protein complex that is assembled in response to a wide array of pathogens and danger-associated molecular patterns. Despite the ability of NLRP3 to respond to diverse cues, the mechanisms controlling the assembly of this complex are contested. Recently published studies showed that HOIL-1, a member of the linear ubiquitin chain assembly complex, contributes to activation of the NLRP3 inflammasome. SHARPIN, along with HOIP and HOIL-1, constitute the linear ubiquitin chain assembly complex. In this study, we examined whether SHARPIN is required for the activation of the NLRP3 inflammasome. Using Sharpin cpdm macrophages (deficient in SHARPIN expression), we demonstrate that SHARPIN is required for optimal activation of the NLRP3 inflammasome by both canonical and noncanonical stimuli. Furthermore, Sharpin cpdm macrophages had dramatic defects on both the NF-kappa B and MAPK pathways, suggesting a role in transcriptional priming of the NLRP3 inflammasome. In conclusion, our study identified SHARPIN as a novel regulator of the NLRP3 inflammasome

    An NLRP3 inflammasome-triggered Th2-biased adaptive immune response promotes leishmaniasis

    Get PDF
    Leishmaniasis is a major tropical disease that can present with cutaneous, mucocutaneous, or visceral manifestation and affects millions of individuals, causing substantial morbidity and mortality in-third-world countries. The development of a Th1-adaptive immune response is associated with resistance to developing Leishmania major (L. major) infection. Inflammasomes are key components of the innate immune system that contribute to host defense against bacterial and viral pathogens; however, their role in regulating adaptive immunity during infection with protozoan parasites is less studied. Here, we demonstrated that the NLRP3 inflammasome balances Th1/Th2 responses during leishmaniasis. Mice lacking the inflammasome components NLRP3, ASC, or caspase 1 on a Leishmania-susceptible BALB/c background exhibited defective IL-1 beta and IL-18 production at the infection site and were resistant to cutaneous L. major infection. Moreover, we determined that production of IL-18 propagates disease in susceptible BALB/c mice by promoting the Th2 cytokine IL-4, and neutralization of IL-18 in these animals reduced L. major titers and footpad swelling. In conclusion, our results indicate that activation of the NLRP3 inflammasome is detrimental during leishmaniasis and suggest that IL-18 neutralization has potential as a therapeutic strategy to treat leishmaniasis patients
    corecore