140 research outputs found

    Novel Approaches towards Highly Selective Self-Powered Gas Sensors

    Get PDF
    The prevailing design approaches of semiconductor gas sensors struggle to overcome most of their current limitations such as poor selectivity, and high power consumption. Herein, a new sensing concept based on devices that are capable of detecting gases without the need of any external power sources required to activate interaction of gases with sensor or to generate the sensor read out signal. Based on the integration of complementary functionalities (namely; powering and sensing) in a singular nanostructure, self-sustained gas sensors will be demonstrated. Moreover, a rational methodology to design organic surface functionalization that provide high selectivity towards single gas species will also be discussed. Specifically, theoretical results, confirmed experimentally, indicate that precisely tuning of the sterical and electronic structure of sensor material/organic interfaces can lead to unprecedented selectivity values, comparable to those typical of bioselective processes. Finally, an integrated gas sensor that combine both the self-powering and selective detection strategies in one single device will also be presented. © 2015 Published by Elsevier Ltd.Peer ReviewedPostprint (published version

    Ultimate response dynamics achieved with gas sensors based on self-heated nanowires

    Get PDF
    Bias current applied to conductometric gas sensors consisting of individual metal oxide nanowires can be used to heat them up to the temperature necessary for sensing. This approach in combination with the good sensitivity and stability of metal-oxide nanowires, can be used to develop prototypes with low power requirements (few tens of microwatts). Here, we present new sensors devices based on this approach that display fast dynamic performance only limited by the gas-solid interaction kinetics,. © 2009

    Radiative decays with light scalar mesons and singlet-octet mixing in ChPT

    Full text link
    We study different types of radiative decays involving f0(980) and a0(980) mesons within a unified ChPT-based approach at one-loop level. Light scalar resonances which are seen in pi pi, pi eta, K K-bar channels of phi(1020) radiative decays and in J/psi decays are responsible for key questions of low-energy dynamics in the strong interaction sector, and decays phi(1020) -> gamma a0(980), phi(1020) -> gamma f0(980), a0(980) -> gamma gamma, f0(980) -> gamma gamma are of interest for current experimental programs in Juelich, Frascati and Novosibirsk. From theoretical point of view it is important to verify whether light scalar mesons are members of some flavor octet or nonet. We find a value of mixing angle dictated by consistency with experiment and coupling structures of ChPT Lagrangian. Decay widths f0(980)/a0(980) -> gamma rho(770)/omega(782), which are not studied experimentally yet, are predicted. We also obtain several relations between widths, which hold independently of coupling constants and represent a fingerprint of the model.Comment: 18 pages, 8 figures; misprints in text and tables corrected, discussion extended, references added; version accepted for publication in Eur.Phys.J.

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+ee^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Measurement of ZZ production cross-sections in the four-lepton final state in pp collisions at √s = 13.6 TeV with the ATLAS experiment

    Get PDF
    This paper reports cross-section measurements of ZZ production in pp collisions at √s = 13.6TeV at the Large Hadron Collider. The data were collected by the ATLAS detector in 2022, and correspond to an integrated luminosity of 29 fb−1. Events in the ZZ → 4ℓ (ℓ = e, μ) final states are selected and used to measure the inclusive and differential cross-sections in a fiducial region defined close to the analysis selections. The inclusive cross-section is further extrapolated to the total phase space with a requirement of 66 <mZ < 116 GeV for both Z bosons, yielding 16.8 ± 1.1 pb. The results are well described by the Standard Model predictions

    Searches for exclusive Higgs boson decays into D⁎γ and Z boson decays into D0γ and Ks0γ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for exclusive decays of the Higgs boson into D⁎γ and of the Z boson into D0γ and Ks0γ can probe flavour-violating Higgs boson and Z boson couplings to light quarks. Searches for these decays are performed with a pp collision data sample corresponding to an integrated luminosity of 136.3 fb−1 collected at s=13TeV between 2016–2018 with the ATLAS detector at the CERN Large Hadron Collider. In the D⁎γ and D0γ channels, the observed (expected) 95% confidence-level upper limits on the respective branching fractions are B(H→D⁎γ)<1.0(1.2)×10−3, B(Z→D0γ)<4.0(3.4)×10−6, while the corresponding results in the Ks0γ channel are B(Z→Ks0γ)<3.1(3.0)×10−6
    corecore