120 research outputs found

    Diffusion Effects on the Breakdown of a Linear Amplifier Model Driven by the Square of a Gaussian Field

    Get PDF
    We investigate solutions to the equation ∂tE−DΔE=λS2E\partial_t{\cal E} - {\cal D}\Delta {\cal E} = \lambda S^2{\cal E}, where S(x,t)S(x,t) is a Gaussian stochastic field with covariance C(x−x′,t,t′)C(x-x',t,t'), and x∈Rdx\in {\mathbb R}^d. It is shown that the coupling λcN(t)\lambda_{cN}(t) at which the NN-th moment diverges at time $t$, is always less or equal for ${\cal D}>0$ than for ${\cal D}=0$. Equality holds under some reasonable assumptions on $C$ and, in this case, $\lambda_{cN}(t)=N\lambda_c(t)$ where $\lambda_c(t)$ is the value of $\lambda$ at which diverges. The D=0{\cal D}=0 case is solved for a class of SS. The dependence of λcN(t)\lambda_{cN}(t) on dd is analyzed. Similar behavior is conjectured when diffusion is replaced by diffraction, D→iD{\cal D}\to i{\cal D}, the case of interest for backscattering instabilities in laser-plasma interaction.Comment: 19 pages, in LaTeX, e-mail addresses: [email protected], [email protected], [email protected], [email protected]

    Oscillatory Behavior in a Model of Non-Markovian Mean Field Interacting Spins

    Get PDF
    We analyze a non-Markovian mean field interacting spin system, related to the Curie\u2013Weiss model. We relax the Markovianity assumption by replacing the memoryless distribution of the waiting times of a classical spin-flip dynamics with a distribution with memory. The resulting stochastic evolution for a single particle is a spin-valued renewal process, an example of a two-state semi-Markov process. We associate to the individual dynamics an equivalent Markovian description, which is the subject of our analysis. We study a corresponding interacting particle system, where a mean field interaction-depending on the magnetization of the system-is introduced as a time scaling on the waiting times between two successive particle\u2019s jumps. Via linearization arguments on the Fokker\u2013Planck mean field limit equation, we give evidence of emerging periodic behavior. Specifically, numerical analysis on the discrete spectrum of the linearized operator, characterized by the zeros of an explicit holomorphic function, suggests the presence of a Hopf bifurcation for a critical value of the temperature. The presence of a Hopf bifurcation in the limit equation matches the emergence of a periodic behavior obtained by simulating the N-particle system

    Oscillatory Behavior in a Model of Non-Markovian Mean Field Interacting Spins

    Get PDF
    We analyze a non-Markovian mean field interacting spin system, related to the Curie\u2013Weiss model. We relax the Markovianity assumption by replacing the memoryless distribution of the waiting times of a classical spin-flip dynamics with a distribution with memory. The resulting stochastic evolution for a single particle is a spin-valued renewal process, an example of a two-state semi-Markov process. We associate to the individual dynamics an equivalent Markovian description, which is the subject of our analysis. We study a corresponding interacting particle system, where a mean field interaction-depending on the magnetization of the system-is introduced as a time scaling on the waiting times between two successive particle\u2019s jumps. Via linearization arguments on the Fokker\u2013Planck mean field limit equation, we give evidence of emerging periodic behavior. Specifically, numerical analysis on the discrete spectrum of the linearized operator, characterized by the zeros of an explicit holomorphic function, suggests the presence of a Hopf bifurcation for a critical value of the temperature. The presence of a Hopf bifurcation in the limit equation matches the emergence of a periodic behavior obtained by simulating the N-particle system

    McKean–Vlasov limit for interacting systems with simultaneous jumps

    Get PDF
    Motivated by several applications, including neuronal models, we consider the McKean–Vlasov limit for a general class of mean-field systems of interacting diffusions characterized by an interaction via simultaneous jumps. We focus our interest on systems where the rate of the jumps is unbounded, which are rarely treated in the mean-field literature, and we prove well-posedness of the McKean–Vlasov limit together with propagation of chaos via a coupling technique. To highlight the role of simultaneous jumps, we introduce an intermediate process which is close to the original particle system but does not display simultaneous jumps. This shows in particular that the simultaneous jumps contribute to the overall rate of convergence of the N-particle empirical measures by a term of order 1/√N

    Effects of boundary conditions on irreversible dynamics

    Full text link
    We present a simple one-dimensional Ising-type spin system on which we define a completely asymmetric Markovian single spin-flip dynamics. We study the system at a very low, yet non-zero, temperature and we show that for empty boundary conditions the Gibbs measure is stationary for such dynamics, while introducing in a single site a ++ condition the stationary measure changes drastically, with macroscopical effects. We achieve this result defining an absolutely convergent series expansion of the stationary measure around the zero temperature system. Interesting combinatorial identities are involved in the proofs

    A simple mean field model for social interactions: dynamics, fluctuations, criticality

    Full text link
    We study the dynamics of a spin-flip model with a mean field interaction. The system is non reversible, spacially inhomogeneous, and it is designed to model social interactions. We obtain the limiting behavior of the empirical averages in the limit of infinitely many interacting individuals, and show that phase transition occurs. Then, after having obtained the dynamics of normal fluctuations around this limit, we analize long time fluctuations for critical values of the parameters. We show that random inhomogeneities produce critical fluctuations at a shorter time scale compared to the homogeneous system.Comment: 37 pages, 2 figure

    McKean-Vlasov limit for interacting random processes in random media

    Get PDF
    Analysis and Stochastic

    Endogenous equilibria in liquid markets with frictions and boundedly rational agents

    Get PDF
    In this paper we propose a simple binary mean field game, where N agents may decide whether to trade or not a share of a risky asset in a liquid market. The asset's returns are endogenously determined taking into account demand and transaction costs. Agents' utility depends on the aggregate demand, which is determined by all agents' observed and forecasted actions. Agents are boundedly rational in the sense that they can go wrong choosing their optimal strategy. The explicit dependence on past actions generates endogenous dynamics of the system. We, firstly, study under a rather general setting (risk attitudes, pricing rules and noises) the aggregate demand for the asset, the emerging returns and the structure of the equilibria of the asymptotic game. It is shown that multiple Nash equilibria may arise. Stability conditions are characterized, in particular boom and crash cycles are detected. Then we precisely analyze properties of equilibria under significant examples, performing comparative statics exercises and showing the stabilizing property of exogenous transaction costs
    • …
    corecore