research

Diffusion Effects on the Breakdown of a Linear Amplifier Model Driven by the Square of a Gaussian Field

Abstract

We investigate solutions to the equation tEDΔE=λS2E\partial_t{\cal E} - {\cal D}\Delta {\cal E} = \lambda S^2{\cal E}, where S(x,t)S(x,t) is a Gaussian stochastic field with covariance C(xx,t,t)C(x-x',t,t'), and xRdx\in {\mathbb R}^d. It is shown that the coupling λcN(t)\lambda_{cN}(t) at which the NN-th moment diverges at time $t$, is always less or equal for ${\cal D}>0$ than for ${\cal D}=0$. Equality holds under some reasonable assumptions on $C$ and, in this case, $\lambda_{cN}(t)=N\lambda_c(t)$ where $\lambda_c(t)$ is the value of $\lambda$ at which diverges. The D=0{\cal D}=0 case is solved for a class of SS. The dependence of λcN(t)\lambda_{cN}(t) on dd is analyzed. Similar behavior is conjectured when diffusion is replaced by diffraction, DiD{\cal D}\to i{\cal D}, the case of interest for backscattering instabilities in laser-plasma interaction.Comment: 19 pages, in LaTeX, e-mail addresses: [email protected], [email protected], [email protected], [email protected]

    Similar works