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Padua, Padova, Italy

ABSTRACT
Motivated by several applications, including neuronal models, we
consider the McKean–Vlasov limit for a general class of mean-field
systems of interacting diffusions characterized by an interaction via
simultaneous jumps. We focus our interest on systems where the
rate of the jumps is unbounded, which are rarely treated in the
mean-field literature, and we prove well-posedness of the
McKean–Vlasov limit together with propagation of chaos via a cou-
pling technique. To highlight the role of simultaneous jumps, we
introduce an intermediate process which is close to the original par-
ticle system but does not display simultaneous jumps. This shows in
particular that the simultaneous jumps contribute to the overall rate
of convergence of the N-particle empirical measures by a term of
order 1=

ffiffiffiffi
N

p
.
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1. Introduction

Treatable modeling for complex systems often involves the mean-field assumption: the
system is comprised by several interacting components, whose distribution is permuta-
tion invariant. This assumption allows in several cases the derivation of macroscopic
equations for the dynamics (McKean–Vlasov equations), in the limit as the number of
components tends to infinity. Macroscopic behavior is also related to the phenomenon
of propagation of chaos, which states that a fixed number of components become sto-
chastically independent as the total number of components increases to infinity.
Since the introduction of this topic in the study of fluid dynamics [1, 2], dynamic

mean-field models have been considered both in general [3–6] and for special models,
motivated by life sciences [7–10] and social sciences [11–13]. General results on propa-
gation of chaos include diffusions with jumps [4, 5], under suitable Lipschitz conditions
on the coefficients. In recent years, neuronal networks have motivated the introduction
of models whose components are allowed to jump simultaneously. Propagation of chaos
is not obvious in these models, since simultaneous jumps could in principle interfere
with asymptotic independence. In [14], this problem is solved via a rather involved
approximation techniques, while existing techniques have been adapted to this context
in [10, 15].
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The purpose of this paper is to prove propagation of chaos results for general models
with simultaneous jumps, which include the great majority of those cited above, by
applying coupling techniques mainly borrowed from [4]. The peculiarity of this
approach is the L1 framework, reflected in the use of the Wasserstein-one distance. The
L1 framework, as opposed to the more common L2 framework, allows to prescribe, in a
natural way, the transition rates of the jumps. Besides simultaneous jumps, the models
we treat may have drift or jump coefficients which are, though only locally Lipschitz as
functions of the state variable, sufficiently stabilizing to yield strong existence and
uniqueness of solutions. Notice that, when dealing with nonlinear Markov processes,
the localization procedure usually employed in the proof of existence and uniqueness
for SDEs with non-globally Lipschitz coefficients does not work in general [16].
We aim to highlight the role of the simultaneous jumps in this general class of sys-

tems. For this reason, we combine coupling arguments with the introduction of an
“intermediate process” that will be convenient in handling the jump terms. The cou-
pling approach for the proof of propagation of chaos, in particular in the presence of
jump terms, is rarely chosen when the coefficients of the model are not globally
Lipschitz continuous but it is of great interest since it provides a rate of convergence.
Indeed, from a numerical or statistical points of view, it is desirable to know explicitly
the rate at which the empirical measure of a system of interacting particles converges to
the law of its McKean–Vlasov limit. Our work aims to underline that, for many systems
considered in the literature, no ad hoc technique is necessary to obtain propagation of
chaos results in the presence of jumps and only locally Lipschitz terms. It also provides
a framework that can be applied to generalizations of the models recently proposed in
neuroscience and in other applications.
The paper is organized as follows. In Section 2, we introduce at an informal level the

framework, describing the main characteristics of both the particle system and the non-
linear process that we are interested in. In the following sections, we prove our results
under precise assumptions, for three classes of systems. In Section 3, we work under
Lipschitz conditions, where rather straightforward adaptations of standard techniques
are applied. In Section 4, we introduce a class of nonlinear diffusions with jumps where
the drift term comes from a convex potential. In Section 5, we take inspiration from
the neuroscience models mentioned above and adapt our techniques to a class of piece-
wise deterministic processes, where the jump rate is superlinear.

2. Interacting particle systems and macroscopic limits

In this section, we introduce both the microscopic and the macroscopic dynamics at an
informal level, and illustrate the phenomenon of propagation of chaos. In the remaining
part of the paper well-posedness and convergence will be shown under various
assumptions.

2.1. The microscopic dynamics

Let XN ¼ ðXN
1 ; :::;X

N
NÞ 2 R

d�N be the spatial positions of N different particles moving
in R

d. We introduce the corresponding empirical measure
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lNX¼:
1
N

XN
i¼1

dXN
i
:

When the time variable appears explicitly in XNðtÞ, we write lNXðtÞ to indicate the
time dependence of the empirical measure. Note that lNXðtÞ is an element of MðRdÞ,
the set of probability measures on the Borel subsets of Rd.
The particle positions XNðtÞ evolve as a jump diffusion process with the following

specifications for the ith particle:

� a drift coefficient of the form FðXN
i ðtÞ; lNXðtÞÞ for some function F : Rd �

MðRdÞ ! R
d common to all particles;

� a diffusion coefficient of the form rðXN
i ðtÞ; lNXðtÞÞ for some function

r : Rd �MðRdÞ ! R
d�d1 , again the same for all particles;

� the jump amplitude and rate: particle i jumps by a random amplitude

wðXN
i ðtÞ; lNXðtÞ; hNi Þ with rate kðXN

i ðtÞ; lNXðtÞÞ; this main jump induces simultan-
eous collateral jumps of all other particles: the jth particle jumps by a random

amplitude
HðXN

i ðtÞ;XN
j ðtÞ;lNX ðtÞ;hNi ;hNj Þ

N , where randomness of the jumps is given by the

random parameter hN ¼ ðhNi Þi¼1;...;n which is distributed according to a symmet-

ric probability measure mN on ½0; 1�N, that is, mN is invariant under permutation

of indices. Here k, W, and H are functions R
d �MðRdÞ ! ½0;1Þ,

R
d �MðRdÞ � ½0; 1� ! R

d, and R
d � R

d �MðRdÞ � ½0; 1�2 ! R
d, respectively.

In more analytic terms, we are considering a Markov process XN ¼ fXNðtÞgt2½0;T�
with values in R

d�N whose infinitesimal generator takes the following form on a suit-
able family of test functions f :

LNf xð Þ ¼
XN
i¼1

�
F xi; l

N
x

� � � @if xð Þ þ 1
2

Xd
j;k¼1

a xi; l
N
x

� �
jk � @2

i f xð Þjk

þk xi; lNx
� �Ð

0;1½ �N f x þ DN
i x; lNx ; h

N
� �� �

� f xð Þ
� �

�N dhNð Þ
�
;

where @ifðxÞ indicates the vector of first order derivatives w.r.t. xi, @2
i fðxÞ indicates the

Hessian matrix of the second order derivatives w.r.t. xi, aðxi; lNx Þ¼: rðxi; lNx Þrðxi; lNx Þ�
and

DN
i x; lNx ; h

N
� �

j¼
:

H xi; xj; lNx ; h
N
i ; h

N
j

� �
N

for j 6¼ i;

w xi; lNx ; h
N
i

� �
for j ¼ i:

8><>:
Towards a rigorous construction, allowing the limit as N ! þ1, let us consider a fil-

tered probability space ðX;F ; ðF tÞtP0;PÞ satisfying the usual hypotheses, rich enough
to carry an independent family ðBi;N iÞi2N of d-dimensional Brownian motions Bi and
Poisson random measures N i with characteristic measure l� l� �. Here l is the
Lebesgue measure restricted to ½0;1Þ and � is a symmetric probability measure on
½0; 1�N such that, for every NP1, �N coincides with the projection of � on the first N
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coordinates, for a consistent family of symmetric probability distributions f�Ngn2N. We
will construct XN as the solution of the following SDE

dXN
i tð Þ ¼ F XN

i tð Þ; lNX tð Þ� �
dtþ r XN

i tð Þ; lNX tð Þ� �
dBi

t

þ 1
N

X
j6¼i

ð
0;1½ Þ� 0;1½ �N

H XN
j t�ð Þ;XN

i t�ð Þ;lNX t�ð Þ; hj; hi
� �

l 0;k XN
j t�ð Þ;lNX t�ð Þð Þð � uð ÞN j dt; du; dhð Þ

þ
ð
0;1½ Þ� 0;1½ �N

w XN
i t�ð Þ; lNX t�ð Þ; hi

� �
l 0;k XN

i t�ð Þ;lNX t�ð Þð Þð � uð ÞN i dt; du; dhð Þ;

(1)

i ¼ 1; :::;N. The existence and uniqueness of a solution starting from a vector of initial
conditions ðXN

1 ð0Þ; :::;XN
Nð0ÞÞ depends obviously on the assumptions on the coefficients,

and we will specify sufficient conditions in the following sections.

Remark 2.1. Notice that we made the choice of considering separately the jump’s rate
and amplitude, a similar representation appears in [17]. This is motivated by the fact
that we are mainly interested in the jumps and we want to state a clear framework, use-
ful for applications. The non-compensated jump component is often represented by a
measure that does not directly describe the behavior of the system. Here, we want to
highlight the role of the jumps, therefore we describe a diffusion process that at each
position has a certain jump rate and a set of possible jumps, represented by the func-
tions k and DN, respectively. Our assumptions will allow for unbounded jump rates. In
the next sections, we will see that the first natural assumption is to have globally
Lipschitz conditions on the functions k and DN. This is the reason why we need to per-
form all our proofs in an L1 framework, instead of the classical L2 approach for stochas-
tic calculus. Indeed, when dealing with the well-posedness of the nonlinear Markov
process, we will need to bound expectations of the supremum over a time interval of an
integral w.r.t. the Poisson random measure N . In an L2 framework, this involves the
corresponding compensated martingale fN and needs bounds of the type, for X; Y 2
R

Nd,ð1
0

ð
0;1½ �N

║DN X; hð Þl 0;k Xð Þð � uð Þ�DN Y; hð Þl 0;k Yð Þð � uð Þ║pdu� dhð Þ6C║X�Y║p; (2)

for p ¼ 2. However, sometimes (2) may hold for p ¼ 1, but not for p ¼ 2, which justi-
fies the choice of getting the L1 framework, where we do not need to compensate the
process N. For instance, if D is constant and k is globally Lipschitz, (2) holds for p ¼ 1
and not p ¼ 2.

2.2. Macroscopic process

Suppose the solution XN of (1) exists, and that its initial condition has a permutation
invariant distribution. Fix an arbitrary component i, and assume the process XN

i has a
limit in distribution; by symmetry, the law of the limit does not depend on i, so we
denote by X the limit process. To identify, at a heuristic level, its law, we make the fur-
ther assumption that a law of large numbers holds, i.e. lNXðtÞ converges, as N ! þ1,
to the law lt of XðtÞ. Letting N ! þ1 in (1) we deduce, at a purely formal level, that
the limit process XðtÞ has the law of the solution of the McKean–Vlasov SDE:
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dX tð Þ ¼ F X tð Þ; lt
� �þ lt; k �; ltð Þ

ð
0;1½ �2

H �;X tð Þ; lt; h1; h2
� �

�2 dh1; dh2ð Þ
* + !

dt

þr X tð Þ; lt
� �

dBt þ
ð
0;1½ Þ� 0;1½ �N

w X t�ð Þ; lt; h1
� �

1 0;k X t�ð Þ;ltð Þð � uð ÞN dt; du; dhð Þ:
(3)

Here, B is a d1-dimensional Brownian motion and N an independent Poisson ran-
dom measure with characteristic measure dtdu�ðdhÞ on ½0;1Þ2 � ½0; 1�N as above. By
h�; �i we indicate the integral of a function on its domain with respect to a certain meas-
ure; thus, hl;/i ¼ Ð

R
d/ðyÞlðdyÞ.

Remark 2.2. The Poisson random measures appearing in Equations (1) and (3), respect-
ively, have characteristic measure defined on ½0;1Þ2 � ½0; 1�N. The two equations could
equivalently be stated in terms of Poisson random measures with characteristic meas-
ures defined on ½0;1Þ2 � ½0; 1�N (namely, l� l� �N) and on ½0;1Þ2 � ½0; 1� (namely,
l� l� �1). The reason for our seemingly unnatural choice is that it prepares for the
coupling argument we will use below to establish propagation of chaos. We will need,
for each N, a coupling of the N-particle system with N independent copies of the
limit system.
Existence and uniqueness of solutions to (3) starting from a given initial condition

Xð0Þ will be discussed in the following sections. Note that (3) is not a standard SDE
since the law lt of the solution appears as an argument of its coefficients. It is often
referred to as McKean–Vlasov SDE, as it is customary to call McKean–Vlasov equation
the partial differential equation solved by the law lt, namely, in the weak form,

hlt;/i�hl0;/i ¼
ðt
0
hls;L lsð Þ/ids;

where

L ltð Þ/ xð Þ¼: F x; ltð Þ@/ xð Þ þ 1
2

Xd
j;k¼1

a x;ltð Þjk@2/ xð Þjk

þ lt; k �; ltð Þ
ð
0;1½ �2

H �; x; lt; h1; h2ð Þ�2 dh1; dh2ð Þ
* +

@/ xð Þ

þk x; ltð Þ
ð
0;1½ �

/ xþ w x; lt; h1ð Þð Þ � / xð Þ� �
�1 dh1ð Þ:

2.3. Propagation of chaos

The link between the microscopic dynamics (1) and the macroscopic limit (3) is
explained by the phenomenon of propagation of chaos. Let l be a probability measure
on R

d. We assume that the sequence of the distributions of XNð0Þ is l-chaotic: for every
k 2 N, the vector ðXN

1 ð0Þ;XN
2 ð0Þ; :::;XN

k ð0ÞÞ converges in distribution to the product
measure l�k. Fix an arbitrary time horizon T>0, and denote by XN½0;T� ¼
ðXNðtÞÞt2½0;T� the random path of the microscopic process up to time T. We say that
propagation of chaos holds if the distribution of XN½0;T� is itself Q-chaotic for some
probability measure Q on the Skorohod space of c�adl�ag functions Dð½0;T�;RdÞ, that is,
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for each fixed k 2 N, the vector of random paths ðXN
1 ½0;T�;XN

2 ½0;T�; :::;XN
k ½0;T�Þ con-

verges in distribution to Q�k. For a comprehensive introduction to the notion of propa-
gation of chaos see [6].
To illustrate the general strategy of proof, it is useful to introduce an intermediate

process YN ¼ ðYNðtÞÞt2½0;T� with values in R
d�N. This Markov process YN can be given

as the solution of the SDE

dYN
i tð Þ ¼ F YN

i tð Þ; lNY tð Þ� �
dtþ r YN

i tð Þ; lNY tð Þ� �
dBi

t

þ 1
N

XN
j¼1

k YN
i t�ð Þ; lNY t�ð Þ� �ð

0;1½ �2
H YN

j t�ð Þ;YN
i t�ð Þ; lNY t�ð Þ; h1; h2

� �
�2 dh1; dh2ð Þdt

þ
ð
0;1½ Þ� 0;1½ �N

w YN
i t�ð Þ; lNY t�ð Þ; h� �

l 0;k YN
i t�ð Þ;lNi t�ð Þð Þð � uð ÞN i dt; du; dhð Þ;

(4)

i ¼ 1; :::;N, where again Bi are independent d-dimensional Brownian motions and N i

are independent Poisson random measures with characteristic measure l� l� �. It is
immediate to see that the process YN differs from the original process XN in the jump
terms; indeed, here the collateral jumps have been absorbed by a new drift term, while
the amplitude of the remaining jumps affects only one component a time. By using the
same Brownian motions and the same Poisson random measures in (1) and in (4), the
processes XN and YN are coupled, i.e. are realized on the same probability space: it will
not be hard to give conditions for the L1-convergence to zero of XN

1 ½0;T��YN
1 ½0;T�.

Thus, the fact that the law of XN is Q-chaotic will follow if one shows that the law of
YN is Q-chaotic. Since YN has no simultaneous jumps, this can be obtained along the
lines of the classical approach. The intermediate process has the nice feature of high-
lighting the role of simultaneous jumps in the rate of convergence in W1 Wasserstein
distance of the empirical measure. Indeed by comparing the empirical measures of XN

and YN, we obtain that the rate of convergence due to the simultaneous jumps is of the
order 1=

ffiffiffiffi
N

p
, while the final rate obviously depends on the moments of initial condi-

tions and of the process itself, see [18].

3. Globally Lipschitz conditions on all coefficients

In this section, we give Lipschitz conditions under which we can prove rigorously the
results informally stated in the previous section. To state these conditions and the corre-
sponding theorems, we need a suitable metric on spaces of probability measures.
Let M1ðRdÞ be the space of probability measures on R

d with finite first moment:

M1
R

dð Þ ¼ l 2 M R
dð Þ :

ð
║x║l dxð Þ<þ1

	 

:

This space is equipped with the W1 Wasserstein metric:

q l; �ð Þ¼: inf
Ð
R

d�R
d║x� y║p dx; dyð Þ; p has marginals l and �

n o
¼ sup hg; li � hg; �i : g : Rd ! R;║g xð Þ � g yð Þ║6║x� y║

n o
:

We also consider the following subset of MðDð½0;T�;RdÞÞ, the set of the probability
measures on Dð½0;T�;RdÞ:
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M1 D 0;T½ �;Rd
� �� �

¼: a 2 M D 0;T½ �;Rd
� �� �

:

ð
D

sup
t2 0;T½ �

║x tð Þ║a dxð Þ < þ1
( )

;

and provide it with the metric

qT a; bð Þ¼: inf
ð
D�D

sup
t2 0;T½ �

║x tð Þ � y tð Þ║P dx; dyð Þ; where P has marginals a and b

( )
:

The metric qT is not complete on M1ðDð½0;T0�;RdÞÞ as it is based on the supremum
norm. In our proofs all the estimates that we make will clearly hold also for the weaker
Wasserstein metric

�qT a; bð Þ¼: inf
ð
D�D

dT x; yð ÞP dx; dyð Þ; where P has marginals a and b

	 

;

where dT is the classical Skorohod metric, see [19]. Since dT is complete on
Dð½0;T0�;RdÞ, �qT is complete on M1ðDð½0;T0�;RdÞÞ (see, for instance, [20]), and it is
weaker than qT because the Skorohod metric dT is bounded from above by the distance
in supremum norm. Therefore, we choose to give our estimates with respect to qT
because of its simplicity.
In what follows, we shall adopt a notion of chaoticity that is stronger than the one

we stated above.

Definition 3.1. Let XN ¼ ðXN
1 ;X

N
2 ; :::;X

N
NÞ be a sequence of random vectors with com-

ponents XN
i 2 R

d (resp. XN
i 2 Dð½0;T�;RdÞ). For l 2 M1ðRdÞ (resp.

l 2 M1ðDð½0;T�;RdÞÞ), we say that XN is l-chaotic in W1 if its distribution is permuta-
tion invariant and, for each k 2 N, the law of the vector ðXN

1 ;X
N
2 ; :::;X

N
k Þ converges to

l�k with respect to the metric q (resp. qT).

3.1. Existence and uniqueness of solutions for the particle system and the
McKean–Vlasov equation

The conditions on the coefficients of system (1) and the corresponding limit (3) are
as follows:

Assumption 1. (Li) The classical global Lipschitz assumption on F and r: 9 eL> 0 such
that, for all x; y 2 R

d, all a; c 2 M1ðRdÞ,

║F x; að Þ�F y; cð Þ║�║r x; að Þ�r y; cð Þ║6eL ║x� y║þ q a; cð Þ
� �

:

(I) The integrability condition: for all N 2 N, for all x 2 R
d�N and all a 2 M1ðRdÞð

0;1½ �N
kDN

i x; a; hN
� �

k�N dhNð Þ<1:

(L1) The L1-Lipschitz assumption on the jump coefficients: 9 �L> 0 such that, for all
x; y 2 R

d, all a; c 2 M1ðRdÞ,
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ð
0;1½ Þ� 0;1½ �

║w x; a; hð Þl 0;k x;að Þð � uð Þ�w y; c; hð Þl 0;k y;cð Þð � uð Þ║du�1 dhð Þ6�L ║x� y║þ q a; cð Þ
� �

and

║ha; k �; að Þ
Ð
0;1½ �2H �;x; a; h1; h2ð Þ�2 dh1; dh2ð Þi�hc; k �; cð Þ

Ð
0;1½ �2H �; y; c; h1; h2ð Þ�2 dh1; dh2ð Þi║

6�L ║x� y║þ q a; cð Þ
� �

:

In the following, we set L¼: eL��L.
Existence and uniqueness of a square integrable strong solution of (1) and (4) starting

from a vector of square integrable initial conditions ðXN
1 ð0Þ; :::;XN

Nð0ÞÞ, independent of
the family ðBi;N iÞi2N, are ensured by Assumption 1; see Theorem 1.2 in [4]. The same
assumptions also guarantee existence and uniqueness of a strong solution of (3) starting
from any square integrable initial condition Xð0Þ; see Theorem 2.1 in [4].

3.2. Propagation of chaos

In addition to the aforementioned assumptions, for the proof of propagation of chaos,
we will need the following square integrability condition on the amplitude of the collat-
eral jumps:

Assumption 2. (I2) There exists a constant C> 0 such that, for all x; y 2 R
d and all

a 2 M1ðRdÞ ð
0;1½ Þ� 0;1½ �N

║H x; y; a; h1; h2ð Þl 0;k x;að Þð � uð Þ║2du�2 dhð Þ6C:

We begin by establishing the closeness between the original particle system XN and
the intermediate process YN.

Proposition 3.1. Grant Assumptions 1 and 2. Let XN and YN be the solutions of (1) and
(4), respectively. We assume the two processes are driven by the same Brownian motions
and Poisson random measures, and start from the same square integrable and permuta-
tion invariant initial condition. Then there exists a constant CT>0 such that, for each
fixed i 2 N, for all NP1

E sup
t2 0;T½ �

║XN
i tð Þ � YN

i tð Þ║
� �

6 CTffiffiffiffi
N

p : (5)

Proof. To simplify notation, we adopt the following abbreviations:

Hi;j XN s�ð Þ; h� �¼: H XN
i s�ð Þ;XN

j s�ð Þ; lNX s�ð Þ; hi; hj
� �

;

ki XN s�ð Þ� �¼: k XN
i s�ð Þ; lNX s�ð Þ� �

;

wi X
N s�ð Þ; h� �¼: w XN

i s�ð Þ; lNX s�ð Þ; hi
� �

;

U¼: 0;1½ Þ � 0; 1½ �N:
By permutation invariance of both the initial condition and the dynamics, we have,

for every t 2 ½0;T�,
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E sup
s2 0;t½ �

║XN
i sð Þ � YN

i sð Þ║
� �

¼ 1
N

XN
j¼1

E sup
s2 0;t½ �

║XN
j sð Þ � YN

j sð Þ║
� �

:

Moreover this, together with the coupling bound for the W1 Wasserstein metric,
implies that, for all tP0

E q lNX tð Þ; lNY tð Þ� �� �
6 1
N

XN
j¼1

E ║XN
j tð Þ � YN

j tð Þ║
h i

¼ E ║XN
i tð Þ � YN

i tð Þ║
h i

:

Fix t 2 ½0;T�, and set

Fi¼: E
ðt
0
║F XN

i ðsÞ; lNXðsÞÞ � FðYN
i ðsÞ; lNY ðsÞ

� �
║ds

� �
;

ri¼: E sup
r2½0;t�

k
ðr
0
ðrðXN

i ðsÞ; lNXðsÞÞ � rðYN
i ðsÞ; lNY ðsÞÞÞdBi

sk
" #

;

Hi ¼: E½ sup
r2½0;t�

k 1
N

X
j 6¼i

ð
½0;r��U

Hj;iðXNðs�Þ; hÞlð0;kjðXNðs�ÞÞ�ðuÞN jðds; du; dhÞ

� 1
N

XN
j¼0

ð
½0;r��U

Hj;iðYNðs�Þ; hÞlð0;kjðYNðs�ÞÞ�ðuÞds du�ðdhÞk�;

wi¼: E½ sup
r2½0;t�

k
ð
½0;r��U

wiðXNðs�Þ; hÞlð0;kiðXNðs�ÞÞ�ðuÞN iðds; du; dhÞ

�
ð
½0;r��U

wiðYNðs�Þ; hÞlð0;kiðYNðs�ÞÞ�ðuÞN iðds; du; dhÞk�:

Note that all these quantities do not depend on the choice of i, which is therefore
omitted in what follows. Then

E sup
s2 0;t½ �

║XN
i sð Þ � YN

i sð Þ║
� �

6Fþ rþHþ w: (6)

The term F can be easily bounded thanks to the Lipschitz condition (Li) and the cou-
pling bound for the W1 Wasserstein metric, and we obtain

F6 2L
ðt
0
E ║XN

i sð Þ � YN
i sð Þ║

h i
ds:

The bound on r involves the Burkholder–Davis–Gundy inequality, and we get, for
some constant M not depending on N nor t,

r6ME
ðt
0

║XN
i ðsÞ � YN

i ðsÞ║þ 1
N

XN
j¼1

║XN
j ðsÞ � YN

j ðsÞ║
 !2

ds

 !1=224 35
6 2M

ffiffi
t

p
E sup

s2½0;t�
║XN

i ðsÞ � YN
i ðsÞ║

" #
:

The term H needs to be treated again with the Burkholder–Davis–Gundy inequality. In
what follows, we denote byfN i

the compensated Poisson measure associated to N i. Notice
the fact that ffN igi¼1;:::;N is a family of orthogonal martingales. Therefore, for a certain
constant K> 0 coming from the Burkholder–Davis–Gundy inequality, the constant L> 0
coming from condition (L1) and a constant C> 0 not depending on N nor t, we have
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H6E supr2½0;t� ║
1
N

X
j6¼i

ð
½0;r��U

Hj;iðXNðs�Þ; hÞl½0;kjðXNðs�ÞÞÞeNjðds; du; dhÞ║
24 35

þE supr2½0;t� ║
1
N

XN
j¼1

ð
½0;r��U

ðHj;iðXNðs�Þ; hÞlð0;kjðXNðs�ÞÞ� �Hj;iðYNðs�Þ; hÞ1ð0;kjðYNðs�ÞÞ�Þds du�ðdhÞ║
" #

þ 1
N
E sup

r2½0;t�
║
ð
½0;r��U

Hi;iðXNðs�Þ; hÞlð0;kjðXNðs�ÞÞ�ds du �ðdhÞ║
" #

6K
N
E

X
j6¼i

ðt
0

ð
U
║Hj;iðXNðs�Þ; hÞlð0;kjðXNðs�ÞÞ�ðuÞ║2ds du�ðdhÞ

0@ 1A1=2
264

375
þ
ðt
0
E

"
║ lNs ;

ð
U
H�;iðXNðs�Þ; hÞl½0;k�ðXNðs�ÞÞÞðuÞ du�ðdhÞ


 �
� �lN

s ;

ð
U
H�;iðYNðs�Þ; hÞl½0;k�ðYNðs�ÞÞÞðuÞ du�ðdhÞ


 �
║

#
ds

þ 1
N
E
ðt
0

ð
U
║Hi;iðXNðs�Þ; hÞl½0;kiðXNðs�ÞÞÞðuÞ║du�ðdhÞds

� �
6 Cffiffiffiffi

N
p þ 2L

ðt
0
E½║XN

i ðsÞ � YN
i ðsÞ║�dsþ C

N
:

The term w concerns the main jumps of the particle system and is bounded by the
positivity property of Poisson processes and the Lipschitz condition (L1):

w6E
Ð
0;t½ ��U║wi X

N s�ð Þ; h
� �

l 0;ki XN s�ð Þð Þð � uð Þ � wi Y
N s�ð Þ; h

� �
l 0;ki YN s�ð Þð Þð � uð Þ║Ni ds; du; dhð Þ

h i
¼ E

Ð
0;t½ ��U║wi X

N s�ð Þ; h� �
l 0;ki XN s�ð Þð Þð � uð Þ � wi Y

N s�ð Þ; h� �
l 0;ki YN s�ð Þð Þð � uð Þ║ds du� dhð Þ

h i
62L

Ð t
0 E ║XN

i sð Þ � YN
i sð Þ║

h i
ds:

Therefore, recalling (6), we find that, for every t 2 ½0;T�,
E½ sup

s2½0;t�
║XN

i ðsÞ � YN
i ðsÞ║�62M

ffiffi
t

p
E½ sup

s2½0;t�
║XN

i ðsÞ � YN
i ðsÞ║� þ 6Lðt

0
E½║XN

i ðsÞ � YN
i ðsÞ║�dsþ C

N
þ Cffiffiffiffi

N
p :

Choose T0>0 small enough so that ð1�2M
ffiffiffiffiffi
T0

p Þ>0. By summing over the index i in
the above inequality and dividing both sides by N, we can move the first two terms on
the right-hand side to the left, obtaining, for every t 2 ½0;T0�,

E sup
s2 0;t½ �

║XN
i sð Þ � YN

i sð Þ║
� �

6 6K

1� 2M
ffiffi
t

p
ðt
0
E sup

s2 0;r½ �
║XN

i sð Þ � YN
i sð Þ║

� �
dr

þ C

N 1� 2M
ffiffi
t

p� �þ Cffiffiffiffi
N

p
1� 2M

ffiffi
t

p� � :
An application of Gronwall’s lemma yields

E sup
t2 0;T0½ �

║XN
i tð Þ � YN

i tð Þ║
� �

6 CT0ffiffiffiffi
N

p (7)

for some finite constant CT0 not depending on N. Recall that (7) holds on a time inter-
val ½0;T0� for T0 sufficiently small. If T0 is smaller than T, then we can repeat the
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procedure of estimates on the interval ½T0; ð2T0Þ�T�. In this case, we find that, for every
t 2 ½T0; ð2T0Þ�T�,

E sup
s2 T0;t½ �

║XN
i sð Þ � YN

i sð Þ║
� �

6 1

1� 2M
ffiffiffiffiffiffiffiffiffiffi
t�T0

p E sup
s2 0;T0½ �

║XN
i sð Þ � YN

i sð Þ║
� �� �

þ 6K

1� 2M
ffiffiffiffiffiffiffiffiffiffi
t�T0

p
ðt
T0

E sup
s2 T0;r½ �

║XN
i sð Þ � YN

i sð Þ║
� �

dr

þ C

N 1� 2M
ffiffiffiffiffiffiffiffiffiffi
t�T0

p� �þ Cffiffiffiffi
N

p
1� 2M

ffiffiffiffiffiffiffiffiffiffi
t�T0

p� � ;
where the first term comes from a bound on the initial condition E½kXN

i ðT0Þ�YN
i ðT0Þk�.

Hence, again thanks to Gronwall’s lemma, for some constant C2;T0 ,

E sup
s2 0; 2T0ð Þ�T½ �

║XN
i sð Þ � YN

i sð Þ║
� �

6 CT0 þ Cffiffiffiffi
N

p
1� 2M

ffiffiffiffiffiffiffiffiffiffi
t�T0

p� �þ C

N 1� 2M
ffiffiffiffiffiffiffiffiffiffi
t�T0

p� � !
e

6KT0
1�2M

ffiffiffiffiffiffi
t�T0

p

6C2;T0ffiffiffiffi
N

p :

We proceed by induction until we cover, after finitely many steps, the entire interval
½0;T�. By exchangeability of the laws of both the initial and the intermediate process,
this yields, for i ¼ 1; :::;N,

E sup
s2 0;T½ �

║XN
i sð Þ � YN

i sð Þ║
� �

6 CTffiffiffiffi
N

p

and (5) holds. w

In the next proposition, we use a similar coupling technique and we now show
propagation of chaos for YN.

Proposition 3.2. Grant Assumptions 1 and 2. Let l0 be a probability measure on R
d

such that
Ð kxk2l0ðdxÞ<þ1. For N 2 N, let YN be a solution of Equation (4) in ½0;T�.

Assume that YNð0Þ ¼ ðYN
1 ð0Þ; :::;YN

Nð0ÞÞ, N 2 N, form a sequence of square integrable
random vectors that is l0-chaotic in W1. Let l be the law of the solution of Equation (3)
in ½0;T� with initial law P8Xð0Þ�1 ¼ l0. Then YN is l-chaotic in W1.

Proof. Let the processes YN
i , N 2 N, i 2 f1; :::;Ng be all defined on the filtered probabil-

ity space ðX; F; ðFtÞtP0;PÞ with respect to the family ðBi;N iÞi2N of Brownian motions
and Poisson random measures. Since ðYNð0ÞÞ is l0-chaotic in W1 by hypothesis, we
assume, as we may, that our stochastic basis carries a triangular array
ð�XN

i ð0ÞÞi2f1;:::;Ng;N2N of identically distributed R
d-valued random variables with common

distribution l0 such that ð�XN
i ð0ÞÞi2f1;:::;Ng;N2N and ðBi;N iÞi2N are independent, the

sequence ð�XN
i ð0ÞÞi2f1;:::;Ng is independent for each N, and

/N ¼: E
����XN

i 0ð Þ � YN
i 0ð Þ

���� �
tends to zero as N ! 1.
For N 2 N, i 2 f1; :::;Ng, let �XN

i be the unique strong solution of Equation (3) in
½0;T� with initial condition �XN

i ð0Þ ¼ XN
i ð0Þ a.s., driving Brownian motion Bi and
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Poisson random measure N i. Notice that the processes XN
1 ; :::;X

N
N are independent and

identically distributed for each N.
By definition of the metric qT, the l-chaoticity in W1 of the sequence YN follows

from

lim
N!1

E sup
t2 0;T½ �

����XN
i tð Þ � YN

i tð Þ
���� �

¼ 0; (8)

for every fixed i 2 N. However, the limit is the same by exchangeability of components.
The term in (8) is bounded by

E sup
t2 0;T½ �

���YN
i tð Þ � �XN

i tð Þ
���� �

	 /N þ �F þ �r þ �H þ �w;

where

�F¼: E
ðT
0

���FðYN
i ðsÞ; lNY ðsÞÞ � Fð�XN

i ðsÞ; lsÞ
���ds� �

;

�r¼: E sup
t2½0;T�

��� ðt
0
rðYN

i ðsÞ; lNY ðsÞÞ � rð�XN
i ðsÞ; lsÞdBi

s

���" #
;

�H¼: E
"

sup
t2½0;T�

��� ðt
0
hlNY ðsÞ;

ð
U
Hð�;YN

i ðsÞ; lNY ðsÞ; hÞlð0;kjð�;lNY ðsÞÞ�ðuÞ du�ðdhÞids

�
ðt
0

ð
U
hls;Hð�; �XN

i ðsÞ; ls; hÞlð0;kjð�;lsÞ�ðuÞ du�ðdhÞids
���#;

�w¼: E
"

sup
t2½0;T�

���ð
½0;t��U

wðYN
i ðs�Þ;lNY ðsÞ; hÞlð0;kðYN

i ðs�Þ;lNY ðs�ÞÞ�ðuÞ

�wð�XN
i ðs�Þ; ls� ; hÞlð0;kið�XN

i ðs�Þ;ls�Þ�ðuÞN
iðds; du; dhÞ

���#:
The terms �F, �r, and �w are treated exactly as in Proposition 3.1, whereas the term �H
only requires the application of the Lipschitz condition (L1). By mimicking the steps in
Proposition 3.1, there exists a T0>0 small enough and a constant CT0>0, independent
of N, such that we can apply Gronwall’s lemma and obtain

E sup
t2 0;T0½ �

���YN
i tð Þ � �XN

i tð Þ
���� �

6CT0

ðT0

0
E q lNY tð Þ;lt
� �� �

dtþ
ffiffiffiffiffi
T0

p
E sup

t2 0;T0½ �
q lNY tð Þ; lt
� �� �

þ /N

 !
:

(9)

By the triangle inequality, for every fixed t 2 ½0;T0�,

E q lNY tð Þ; lt
� �� �

6E q lNY tð Þ;l�XN
tð Þ

� �h i
þ E sup

t2 0;T0½ �
q l�XN tð Þ; lt
� �" #

6E sup
t2 0;T0½ �

���YN
i tð Þ��XN

i tð Þ
���� �

þ E qT0
l�XN

; l
� �h i

Then, for a T0 sufficiently small, using again Gronwall’s lemma, there exists a positive
constant, depending on T0, that by abuse of notation we will indicate again with
CT0 > 0, such that
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E sup
t2 0;T0½ �

���YN
i tð Þ � �XN

i tð Þ
���� �

6CT0

ðT0

0
E qt l�X

N
; l

� �h i
dtþ

ffiffiffiffiffi
T0

p
E qT0

l�XN
; l

� �h i
þ /N

 !
:

We see that the bound on (8) depends on the initial conditions and on
E½qT0

ðl�XN
; lÞ�, that is, the distance, on the time interval ½0;T0�, between the empirical

measure of N i.i.d. copies of the solution of the process with law l and the law lt itself.
By the Glivenko–Cantelli theorem, setting

bN :¼ E qT l�XN tð Þ; lt
� �h i

;

we have

lim
N!1

bN ¼ 0:

Therefore, we know that there exists a constant CT0 > 0 such that, for N going to
infinity, we have

E sup
t2 0;T0½ �

���YN
i tð Þ��XN

i tð Þ
���� �

6CT0 bN þ /N
� �

:

Iterating this procedure as in Proposition 3.1, we extend the above result to ½0;T�, i.e.
E sup

t2 0;T½ �

���YN
i tð Þ � �XN

i tð Þ
���� �

6CT bN þ /N
� �

;

for a suitable constant CT. This establishes l-chaoticity of YN in W1. w

Remark 3.1. Since we have an explicit rate of convergence in (5), it would be desir-
able to give also some bounds on bN and /N in terms of N. However, the rate of
convergence of empirical measures of i.i.d. random variables in Wasserstein distance
is a delicate issue, see for example [18, 21]. By the results in [18], we have sharp
bounds for measures in R

d, depending on the moments and on the dimension d. If
the diffusion coefficient does not depend on the measure, it is possible to exploit
these results to get an explicit rate of convergence. Indeed, the second term in the rhs
of (9) would not appear and all the subsequent estimates would only depend on dis-
tance of measures on R

d and not on the space of trajectories. In Proposition 3.1 we
prove that, in any situation, the simultaneous jumps in the form presented here, do
not worsen this rate of convergence, since they contribute with a term of
order 1=

ffiffiffiffi
N

p
.

The propagation of chaos property for XN is now an immediate consequence of
Propositions 3.1 and 3.2.

Corollary 3.3. Grant Assumptions 1 and 2. Let l0 be a probability measure on R
d such

that
Ð kxk2l0ðdxÞ<þ1. For N 2 N, let XN be a solution of Equation (1) in ½0;T�.

Assume that XNð0Þ ¼ ðXN
1 ð0Þ; :::;XN

Nð0ÞÞ, N 2 N, form a sequence of square integrable
random vectors that is l0-chaotic in W1. Let l be the law of the solution of Equation (3)

in ½0;T� with initial law P
Xð0Þ�1¼ l0. Then XN is l chaotic in W1.
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4. Non-globally Lipschitz drift

We are interested in enlarging the class of systems for which propagation of chaos holds.
In this section, we relax the Lipschitz assumption on the drift, allowing gradients of general
convex potentials. This includes relevant examples as those appeared in [3, 12].

4.1. Particle system

Consider the particle system (1) in Section 2. The coefficients are supposed to satisfy
the following set of conditions.

Assumption 3. (U) The drift coefficient F : Rd �MðRdÞ ! R
d is of the form

F x; að Þ ¼ ��U xð Þ þ b x; að Þ;
for all x 2 R

d and all a 2 MðRdÞ, where U is convex and C1. The function b is
assumed to be globally Lipschitz in both variables, and for all x 2 R

d we
have supa2M1ðRdÞ bðx; aÞ<1.
(LD) The diffusion coefficient r : Rd �MðRdÞ ! R

d�d1 satisfies the usual global
Lipschitz condition, i.e., 9 eL>0 such that for all x; y 2 R

d, all a; c 2 MðRdÞ,
║r x; að Þ�r y; cð Þ║6eL ║x� y║þ q a; cð Þ

� �
:

Moreover, for all x 2 R
d supa2M1ðRdÞ rðx; aÞ<1.

The jump coefficients satisfy conditions ðIÞ and ðL1Þ from Assumption 1.
As before, we set L¼: �L � eL.

Remark 4.1. Condition ðUÞ is a natural choice when one wants to relax globally-
Lipschitz conditions on coefficients. It induces a process whose trajectories are strongly
constrained by the convex potential. This attracting drift, even when combined with an
unbounded jump rate, should prevent the process from exploding in finite time. We
will see that this is what happens provided the jump rate is in some way “controllable,”
as it is under the Lipschitz assumption ðL1Þ.

4.2. McKean–Vlasov equation with non-Lipschitz drift

Here, we focus on the well-posedness of the McKean–Vlasov limit of the particle system
introduced in Section 4.1, that is, Equation (1) under Assumptions 2 and 3. This limit
will satisfy Equation (3), for which we prove existence and uniqueness of strong solu-
tions in the following. Since the collateral jumps part in the limit gives rise to a globally
Lipschitz drift term, in this subsection, by abuse of notation, we absorb it into the drift
coefficient F, satisfying the weaker condition ðUÞ in Assumption 3. Thus, consider the
stochastic differential equation

dX tð Þ ¼ F X tð Þ; lt
� �

dtþ r X tð Þ; lt
� �

dBt

þÐ 0;1½ Þ� 0;1½ �Nw X t�ð Þ; lt� ; h1
� �

l 0;k X t�ð Þ;lt�ð Þð � uð ÞN dt; du; dhð Þ; (10)

where lt ¼ LawðXðtÞÞ, B is a d1-dimensional Brownian motion and N a stationary
Poisson random measure with characteristic measure l� l� �.
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Theorem 4.1. Let the coefficients of the nonlinear SDE (10) satisfy Assumption 3. Then
for all square integrable initial conditions Xð0Þ 2 R

d, Equation (10) admits a unique
strong solution.

Proof. Let P1 and P2 be two laws on Dð½0;T�;RdÞ, and suppose that X1 and X2 are two
solutions of the following SDE, for k ¼ 1; 2:

dXk tð Þ ¼ F Xk tð Þ;Pkt
� �

dtþ r Xk tð Þ;Pkt
� �

dBt

þ
ð
0;1½ Þ� 0;1½ �N

w Xk t�ð Þ;Pkt� ; h1
� �

l 0;k Xk t�ð Þ;Pkt�ð Þð � uð ÞN dt; du; dhð Þ; (11)

defined on the same probability space ðX;F ; ðF tÞ;PÞ with the same F t-Brownian
motion B, the same Poisson random measure N and with initial condition
X1ð0Þ¼ X2ð0Þ ¼ n P-almost surely. The well-posedness of Equation (11) is ensured by
Lemma A.1. Let Q1 and Q2 be the laws of the solutions on Dð½0;TÞ;RdÞ, and let C be
the map that associates Qk to Pk. We are interested in proving that the map C is a con-
traction for the W1 Wasserstein norm. Hence, we want to bound the distance

qT Q1;Q2
� �

6E sup
t2 0;T½ �

║X1 tð Þ � X2 tð Þ║
� �

: (12)

The idea here, in order to exploit the convexity of U, is to apply Ito’s rule. A classical
approach consists in applying Ito’s rule to a quantity of the type ðX1

t�X2
t Þ2; this L2 approach

does not work in the presence of jump terms. For this reason, we rather use an L1 approach.
To this aim, for all �> 0 we define the following smooth approximation of the norm

f � xð Þ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
║x║2 þ �

q
:

Then, by Ito’s rule and Fatou’s Lemma, we have

E supt2 t0;t1½ � ║X1 tð Þ � X2 tð Þ║
h i

6 liminf
�#0

E sup
t2 t0;t1½ �

f � X1 tð Þ � X2 tð Þ
� �� �

6 liminf
�#0

i� t0; t1½ �þu� t0; t1½ �þb� t0; t1½ � þ r� t0; t1½ � þ R� t0; t1½ � þ K� t0; t1½ �� �
;

where, for t1 2 ½t0;T�, we set

i� t0; t1½ � ¼: E f � X1 t0ð Þ � X2 t0ð Þ� �� �
;

u� t0; t1½ � ¼: E sup
t2 t0;t1½ �

�
ðt
t0

�f � X1 sð Þ � X2 sð Þ
� � �� U X1 sð Þ

� �� U X2 sð Þ
� �� �

ds

" #
;

b� t0; t1½ � ¼: E sup
t2 t0;t1½ �

ðt
t0

�f � X1 sð Þ � X2 sð Þ
� � � b X1 sð Þ;P1

s

� �� b X2 sð Þ;P2
s

� �� �
ds

" #
;

r� t0; t1½ � ¼: 1
2
E sup

t2 t0;t1½ �

ðt
t0

Tr r X1 sð Þ;P1
s

� �� r X2 sð Þ;P2s
� �� �T

Hf � X1 sð Þ�X2 sð Þð Þ r X1 sð Þ;P1
s

� �� r X2 sð Þ;P2s
� �� �

ds

" #
;

R� t0; t1½ � ¼: E sup
t2 t0;t1½ �

ðt
t0

�f � X1 sð Þ � X2 sð Þ
� � � r X1 sð Þ;P1s

� �� r X2 sð Þ;P2
s

� �� �
dBs

" #
;

K�½t0; t1� ¼: E
"

sup
t2½t0;t1�

ðt
t0

ð
½0;1�

ð1
0
f �ðX1ðsÞ þ wðX1ðsÞ;P1

s ; hÞlu6kðX1ðsÞ;P1s Þ � X2ðsÞ

�wðX2ðsÞ;P2
s ; hÞlu6kðX2ðsÞ;P2s ÞÞ�f �ðX1ðsÞ � X2ðsÞÞdu�1ðdhÞds

#
:
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Notice that, by the assumption of convexity of U, for all x and y 2 R
d, it holds

�f � x�yð Þ �� U xð Þ � U yð Þ
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kx�yk2 þ �

q x�yð Þ �� U xð Þ � U yð Þ
� �

P0:

Therefore, the term u�½t0; t1� is easily bounded, since it is always non-positive, i.e.
liminf

�#0
u� t0; t1½ �60:

For the term b�½t0; t1�, we use the global Lipschitz condition on the function b,
together with the properties of W1 Wasserstein distance and inequality (12):

b� t0; t1½ �6E
Ð t1
t0
║b X1 sð Þ;P1

s

� �� b X2 sð Þ;P2s
� �

║ds
h i

6L
Ð t1
t0
E sups2 0;t½ �║X1 sð Þ � X2 sð Þ║
h i

dtþ t1 � t0ð Þq t0;t1½ � P
1;P2

� �� �
:

For estimating the term r�½t0; t1�, we observe that the Hessian matrix of f � has the fol-
lowing form:

Hf � xð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kxk2 þ �

q I� 1

kxk2 þ �
� �3=2 A

0@ 1A;

where A is the d� d matrix such that, for all i; j, Ai;j¼ xixj and I is the identity d� d
matrix. Therefore,

r�½t0; t1�6
ðt0
t0

E

"
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
║X1ðsÞ�X2ðsÞ║2 þ �

q TrðrðX1ðsÞ;P1
s Þ � rðX2ðsÞ;P2s ÞÞT

ðrðX1ðsÞ;P1
s Þ � rðX2ðsÞ;P2s ÞÞ

#
ds

þ
ðt0
t0

E

"
1

2║X1ðsÞ � X2ðsÞ║2 þ �Þ3=2
TrðrðX1ðsÞ;P1s Þ � rðX2ðsÞ;P2

s ÞÞT

ððX1ðsÞ�X2ðsÞÞiðX1ðsÞ�X2ðsÞÞjÞðrðX1ðsÞ;P1
s Þ � rðX2ðsÞ;P2

s ÞÞ
#
ds:

Of course, due to the Lipschitz property of the diffusion coefficient r, this term gives
rise to a new term linear in E½supt2½t0;t1� kX1ðtÞ�X2ðtÞk�, since we have, for a certain KP0,

r� t0; t1½ �6KL
ðt1
t0

E sup
s2 t0;t½ �

║X1 sð Þ � X2 sð Þ║
� �

dtþ t1 � t0ð Þq t0;t1½ � P
1;P2

� � !
:

In addition to the previous arguments, the treatment of the term R�½t0; t1� involves
the Burkholder–Davis–Gundy inequalities and the global Lipschitz condition (LD):

R�½t0; t1�6C1E

�� ðt1
t0

║ðrðX1ðsÞ;P1s Þ � rðX2ðsÞ;P2
s ÞÞT

ðrðX1ðsÞ;P1s Þ � rðX2ðsÞ;P2
s ÞÞ║ds

�1=2�
6C1LE

�� ðt1
t0

sup
s2½t0;t1�

║X1ðsÞ � X2ðsÞ║2dtþ ðt1 � t0Þq½t0;t1�ðP1;P2Þ2
�1=2�

6C1L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt1�t0Þ

p �
E

�
sup

t2½t0;t1�
║X1ðtÞ � X2ðtÞ║

�
þq½t0;t1�ðP1;P2Þ

�
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for some constant C1 not depending on t0; t1. To bound the term K½t0;t1�, we make use
of the properties of the process fKðtÞgt2½0;T�, of the W1 Wasserstein distance, as well as
condition (L1) and the monotone convergence theorem:

liminf
�#0

K�½t0; t1� ¼ E

�
sup

t2½t0;t1�

ðt
t0

ð
½0;1�

ð1
0
║X1ðsÞ þ wðX1ðsÞ;P1s ; hÞlu6kðX1ðsÞ;P1s Þ � X2ðsÞ

�wðX2ðsÞ;P2s ; hÞlu6kðX2ðsÞ;P2s Þ║�║X1ðsÞ�X2ðsÞ║dsdu�1ðdhÞ
�

6E

� ðt1
t0

ð
½0;1Þ�½0;1�

║wðX1ðs�Þ;P1s� ; hÞ1ð0;kðX1ðs�Þ;P1s�Þ

�
�wðX2ðs�Þ;P2s� ; hÞlð0;kðX2ðs�Þ;P2s�Þ�║dsdu�ðdhÞ�

6L
ðt1
t0

E

�
sup
s2½0;t�

║X1ðsÞ � X2ðsÞ║
�
dtþ ðt1 � t0Þq½t0;t1�ðP1;P2Þ

 !
:

Therefore,

E sup
t2 t0;t1½ �

║X1 tð Þ � X2 tð Þ║
� �

6E ║X1 t0ð Þ � X2 t0ð Þ║
h i

þL Kþ 1ð Þ t1 � t0ð ÞþC1
ffiffiffiffiffiffiffiffiffiffiffi
t1�t0

p� �
q t0;t1½ � P

1;P2
� �

þC1L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1�t0ð Þ

p
E sup

t2 t0;t1½ �
║X1 tð Þ � X2 tð Þ║

� �
þL 1þ Kð Þ t1�t0ð Þ

ðt1
t0

E sup
s2 0;t½ �

║X1 sð Þ � X2 sð Þ║
� �

dt:

By hypothesis, E½kX1ð0Þ � X2ð0Þk� ¼ 0. Choose T0>0 such that 1�C1L
ffiffiffiffiffi
T0

p
>0. Then

E sup
t2 0;T0 �T½ �

kX1 tð Þ � X2 tð Þk
� �

6 L 1þ Kð ÞT0

1� C1L
ffiffiffiffiffi
T0

p
ðT0 �T

0
E sup

s2 0;t½ �
kX1 sð Þ � X2 sð Þk

� �
dt

þ L 1þ Kð ÞT0þC1
ffiffiffiffiffi
T0

p� �
1� C1L

ffiffiffiffiffi
T0

p qT0
P1;P2
� �

:

(13)

Applying Gronwall’s lemma to (13), there exists a T0>0 sufficiently small such that

qT0
Q1;Q2
� �

6E sup
t2 0;T0 �T½ �

kX1 tð Þ � X2 tð Þk
� �

<CT0qT0
P1;P2
� �

;

for some constant CT0<1. Therefore, when Pk ¼: Qk, this shows uniqueness of the
McKean–Vlasov measure in M1ðDð½0;T0�;RdÞÞ. However, since CT0 depends only on
the amplitude of the interval, the same procedure iterated over a finite number of inter-
vals of the type ½T0�T; 2T0�T�, ½2T0�T; 3T0�T�, etc., yields uniqueness of the measure
in M1ðDð½0;T�;RdÞÞ.
The proof of existence is obtained via a Picard iteration argument, starting from (11).

Let Pk ¼: Qk�1, then (11) gives a sequence of laws fQkgk2N, that is a Cauchy sequence
for the metric qT0

on M1ðDð½0;T0�;RdÞÞ. Consequently, it is a Cauchy sequence also
for a weaker Wasserstein metric based on a complete Skorohod metric, that yields exist-
ence of a solution of (11) on ½0;T0�T�. Again, iterating the procedure over a finite
number of intervals gives the thesis.
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4.3. Propagation of chaos

A propagation of chaos result for a particle system with superlinear drift term of type
(U) and simultaneous jumps clearly follows along the lines of Section 3.2, with the tech-
niques of Theorem 4.1. For this reason the following result is almost straightforward.

Theorem 4.2. Grant Assumption 2 and Assumption 3. Let l0 be a probability measure
on R

d such that
Ð kxk2l0ðdxÞ<þ1. For N 2 N, let XN be a solution of Equation (1) in

½0;T�. Assume that XNð0Þ ¼ ðXN
1 ð0Þ; :::;XN

Nð0ÞÞ, N 2 N, form a sequence of square-inte-
grable random vectors that is l0-chaotic in W1. Let Q be the law of the solution of
Equation (3) in ½0;T� with initial law P
Xð0Þ�1¼ l0. Then XN is Q chaotic in W1.
We use again the trick of the sequence of intermediate processes fYNgN2N, where

each process YN ¼ fYNðtÞgt2½0;T� is defined as the solution of the system (4). As before,
the collateral jumps have been absorbed by a new drift term, that by the properties of
the jump rate k and its amplitude H is a globally Lipschitz drift term, that is added to
b, giving rise to a new drift �F that maintains condition (U) of F. For the proof of
propagation of chaos, we apply again the procedure of Section 2.3, starting with the
bound over the distance of the two particle systems (1) and (4) of the form

E sup
t2 0;T½ �

kXN
i tð Þ � YN

i tð Þk
� �

6 CTffiffiffiffi
N

p ;

which is obtained by computations similar to those of Theorem 4.1. Then propagation
of chaos follows by coupling the intermediate process (4) with N independent copies of
the solution of (3).

5. Non-globally Lipschitz jump rate

Stochastic models in neuroscience often focus on the membrane potential of neurons and
describe its spikes in terms of SDEs with jumps. The jump rates in those models are usually
super-linear. It is therefore interesting to investigate systems where the jump coefficients
are not required to be globally Lipschitz. We adapt the model presented in [10] to a
d-dimensional framework and a slightly more general situation allowing for jumps with
random amplitude. In order to get a tractable model with a super-linear jump rate, we are
forced to make more restrictive assumptions on the other parts of the dynamics than in
the previous sections. We consider a model where particles are subject to a linear attracting
drift, we drop the diffusion part, and we assume the main jump to force the particles into a
given compact set. Furthermore, the collateral jumps are of bounded random amplitude
and do not depend on the positions of the affected jumping particle.

5.1. Particle system

We consider the Markov process XN solution of the following SDE, similar to Equation
(1),

dXN
i tð Þ ¼ �XN

i tð Þdtþ 1
N

X
j 6¼i

ð
0;1½ �� 0;1½ �N

V hj; hi
� �

l 0;k XN
j tð Þð Þ½ Þ uð ÞN j dt; du; dhð Þ

�Ð 0;1½ Þ� 0;1½ �N XN
i tð Þ � U hið Þ� �

l 0;k XN
i tð Þð Þ½ Þ uð ÞNi dt; du; dhð Þ

(14)
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for all i ¼ 1; :::;N. As before, ðN iÞi2N is an independent family of Poisson random
measures N i, each of them with characteristic measure l� l� �, l is the Lebesgue meas-
ure restricted to ½0;1Þ, and � is a symmetric probability measure on ½0; 1�N such that
there exists ð�NÞN2N, a consistent family of symmetric probability measures, each of
them defined respectively on ½0; 1�N and coinciding with the projections of � on N
coordinates.

Assumption 4. The coefficients of the system (14) obey the following properties:

� the jump amplitudes, V and U, are two bounded functions from respectively
½0; 1�2 and ½0; 1� to R

d (since they represent two random variables with values in
some bounded subsets of Rd, with abuse of notation we will indicate as expecta-
tions their integrals w.r.t. the measure m);

� the jump rate of each particle is a non-negative C1 function of its position,
k : Rd ! Rþ, that is written as a sum of two functions:

k �ð Þ¼: b k � kð Þ þ h �ð Þ:
� b is a C1, positive, non-decreasing, unbounded function such that

b0 rð Þ6cb rð Þ þ c (15)

for some c>0 and c< 1
5E½kVk�;

� h : Rd ! R is a C1 bounded function, i.e. there exists H>0 such that 8
x 2 R

d, khðxÞk6H.

The assumption c< 1
5E½kVk� will allow to obtain a priori bounds on the moments of

kðXðtÞÞ where XðtÞ is the solution of the corresponding McKean–Vlasov equation, see
(16) below; it is used in the proofs of Lemmas 5.4 and 5.5, which are postponed to
the appendix.

Remark 5.1. The model and the form of the function b is suggested by [10]. It is inter-
esting to notice that Assumption 4 allows to consider non-globally Lipschitz functions;
in particular, this covers all the cases where bðrÞ is of the form ra, for aP1. We also
remark that the condition on b here is a little stronger than in [10], due to the coupling
method (vs. the martingale approach) in the proof, which in particular allows to identify
the rate of convergence, which is of the order Oð 1ffiffiffi

N
p Þ. This requires c< 1

KE½kVk� with K ¼
5 rather than K ¼ 3, as in [10].

Remark 5.2. The neuronal model presented in [14, 15] is similar to this one, but it has
a drift toward the barycenter of the system, instead of the origin. When dealing with
initial conditions with bounded support, we could adapt our computations to that case,
except for the fact that the function b has to be convex. In [15], the authors succeed in
proving propagation of chaos with an explicit rate (namely, the expected 1=

ffiffiffiffi
N

p
) even

for weaker conditions on the initial values, by defining an ad-hoc distance based on the
rate function k itself.
Existence and uniqueness of a non-explosive solution to the system with N fixed,

both the initial particle system (14) and the intermediate process (19) below, rely on a
truncation argument on the function k, see Appendix B.
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5.2. McKean–Vlasov equation

This section is devoted to analyzing the McKean–Vlasov equation whose law is the limit
of the sequence of empirical measures corresponding to system (14), that is

dX tð Þ ¼ E k X tð Þð Þ½ �E V½ �dt�X tð Þdt�
ð
0;1½ Þ� 0;1½ �N

X tð Þ � U h1ð Þ� �
1 0;k X tð Þð Þ½ Þ uð ÞN dt; du; dhð Þ;

(16)

with N a Poisson random measure with characteristic measure l� � � l. Since the
model that we treat is basically an extension in d-dimension of the model presented in
[10], techniques for proving existence and uniqueness of solutions for the nonlinear
Markov process (16) are adaptations of the techniques presented in that paper. The pro-
cedure relies on a priori bounds on moments of the solution and of the expectation of
kðXðtÞÞ; we present the main steps here, while we gather the details in Appendix B.

Lemma 5.1. Let f : Rþ ! R
d be a locally bounded Borel function, then there exists a

unique solution ðZf ðtÞÞ to the SDE

dZf tð Þ ¼ �Zf tð Þdtþ f tð Þdt�
ð
0;1½ Þ� 0;1½ �N

Zf tð Þ �U h1ð Þ� �
l 0;k Zf tð Þð Þ½ Þ uð ÞN dt; du; dhð Þ (17)

with initial condition x and coefficients satisfying Assumption 4. Moreover, for every pair
of locally bounded Borel functions f and g, for every T> 0 there exists a constant CT> 0
such that

E sup
t2 0;T½ �

kZf tð Þ � Zg tð Þk
� �

6CT

ðT
0
sup
s2 0;t½ �

kf sð Þ � g sð Þkdt: (18)

A priori bounds for any solution of (16) are necessary to perform the iteration that
yields existence and uniqueness of the nonlinear process itself. The following lemma
provides the required bounds.

Lemma 5.2. Suppose Assumption 4 is satisfied. Let X be a solution of (16) with integrable
initial condition Xð0Þ; then we have that suptP0 E½kXðtÞk�<1. Moreover, for
p ¼ 1; 2; 3; 4, if E½kpðXð0ÞÞ�<1 then suptP0 E½kpðXðtÞÞ�6C<1, where C only depends
on E½kpðXð0ÞÞ� and on the parameters of equations (16).
The proof of this lemma is in Appendix B and it basically relies on the properties of

the function b.

Theorem 5.3 (Solution of the McKean–Vlasov equation). Under Assumption 4, for any
initial condition Xð0Þ with bounded support and independent of N , there exists a unique
strong solution fXðtÞgt2½0;T� for (16).

Proof. Fix a constant C> 0, and consider the following Picard iteration: ZC
0 ðtÞ � Xð0Þ

and

dZC
n tð Þ ¼ �ZC

n tð Þdtþ E k ZC
n�1 tð Þ� �� �

�C
� �

E V½ �dt
�Ð 0;1½ Þ� 0;1½ �N ZC

n tð Þ � U h1ð Þ� �
l 0;k ZC

n tð Þð Þ½ Þ uð ÞN dt; du; dhð Þ;
ZC
n 0ð Þ ¼ X 0ð Þ

8><>:
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Since the jump term is forcing the process to return in a compact set, the following a
priori bound is essentially obvious: for all nP1 it holds

kZC
n tð Þk6Kþ tCE kVk½ �

a.s. for a suitable K>0 depending on the support of Xð0Þ and the range of UðhÞ.
Indeed, when kZCðtÞk is large, the linear term �ZC

n ðtÞdt as well as the jumps can only
decrease the norm. From Lemma 5.1 we know that there exists a constant CT such that

E sup
t2 0;T½ �

kZC
nþ1 tð Þ � ZC

n tð Þk
� �

6CTE kVk½ �
ðT
0
sup
s2 0;t½ �

E k ZC
n sð Þ

� �� k ZC
n�1 sð Þ

� �� �
dt:

Thanks to the a.s. bounds on kZC
n ðtÞk, we can exploit the local Lipschitzianity of k

and get, for a certain constant KT>0,

E sup
t2 0;T½ �

kZC
nþ1 tð Þ � ZC

n tð Þk
� �

6CTE kVk½ �KT

ðT
0
E sup

s2 0;t½ �
kZC

n sð Þ � ZC
n�1 sð Þk

� �
dt

6:::6 KTCTE kVk½ �Tð Þn
n!

E sup
s2 0;T½ �

kZC
1 sð Þ � ZC

0 sð Þk
� �

:

Therefore the sequence fZC
ngn2N is a Cauchy sequence and its limit ZC is a solution

of the SDE

dZC tð Þ ¼ �ZC tð Þdtþ E k ZC tð Þ
� �� �

�C
� �

E V½ �dt
�
ð
0;1½ Þ� 0;1½ �N

ZC t�ð Þ �U h1ð Þ� �
l 0;k ZC t�ð Þð Þ½ Þ uð ÞN dt; du; dhð Þ:

By Lemma 5.2, we can choose C such that E½kðZCðtÞÞ�6C for all t, so that ZC is
indeed a solution of (16).
To prove uniqueness we can consider two solutions Z1 and Z2. Using the above a

priori bound, (18) and Gronwall’s lemma, their equality follows from stand-
ard arguments.

5.3. Propagation of chaos

As in the previous sections, we introduce an intermediate process fYNðtÞgt2½0;T� that is
the solution of a system, similar to (14), that is

dYN
i tð Þ ¼ �YN

i tð Þdtþ 1
N

XN
j¼1

E V½ �k YN
j tð Þ

� �
dt

�Ð 0;1½ Þ� 0;1½ �N YN
i tð Þ � U hið Þ� �

l 0;k YN
i tð Þð Þ½ Þ uð ÞN i dt; du; dhð Þ

(19)

for all i ¼ 1; :::;N. We indicate the empirical measure corresponding to the solution of
(19) as lNY . In order to use a coupling procedure to prove propagation of chaos, we
need to set some a priori bounds on the involved quantities. The proofs of the two fol-
lowing lemmas are in Appendix B, we state them here to highlight the quantities
involved and the comparison with the a priori bounds for the nonlinear process (16).
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Lemma 5.4. For N>0, under Assumption 4, let XN and YN be solutions, respectively, of
(14) and (19), starting from initial conditions s.t. E½hlNXð0Þ; k4ð�Þi�<1 and
E½hlNY ð0Þ; k4ð�Þi�<1. Then there exists a certain N0>0 such that it holds

sup
NPN0

sup
tP0

E hlNX tð Þ; k4 �ð Þi
h i

<1 and sup
NPN0

sup
tP0

E hlNY tð Þ; k4 �ð Þi
h i

<1:

Lemma 5.4 is crucial for proving that the number of jumps of the system in a com-
pact time interval is proportional to N with probability increasing with N. This bound
is stated in the following lemma.

Lemma 5.5 (Bound on the number of jumps). Assume that Assumption 4 is satisfied,
that, for any N>0, XN and YN are solutions, respectively, of (14) and (19), starting from
initial conditions that are l0-chaotic. Here l0 is a probability measure on R

d s.t.
hl0; k3ð�Þi<1. Then, for any T>0, there exists a positive constant HT and a natural
number N0>0 such that, for certain positive constants KT and eKT

P
CN Tð Þ
N

PHT

� �
6KT

N
and P

Ð T
0 hlNY sð Þ; kidsPHT

� �
6
eKT

N
;

for all N>N0. Here CNðTÞ is the number of jumps performed by system (14) up to time T.

The bounds on the number of collateral jumps and of the corresponding drift in a
compact time interval play a role in the proof of propagation of chaos, since they let us
exploit the local Lipschitzianity of the function k when we start from initial conditions
with bounded support. The proofs of these lemmas involve the form of the function k;
they are given in Appendix B. In the following, we state and prove the result on propa-
gation of chaos; also in this case, the simultaneous jumps result in a rate of the order
1=

ffiffiffiffi
N

p
. As in the previous sections, we start with the comparison between the particle

system XN and the intermediate system YN.

Theorem 5.6. Let Assumptions 4 and 2 be satisfied and let XN and YN be the solution,
respectively, of (14) and (19) with initial conditions XNð0Þ¼ YNð0Þ a.s. that are l0-cha-
otic, with l0 probability measure on R

d with compact support. We assume the two proc-
esses are driven by the same Poisson random measures, and start from the same
permutation invariant initial condition with compact support. Then, for each fixed i 2 N,

lim
N!þ1

E sup
t2 0;T½ �

kXN
i tð Þ � YN

i tð Þk
� �

¼ 0:

Proof. As in previous sections, by permutation invariance of the initial conditions and
of the dynamics, we have

E sup
t2 0;T½ �

kXN
i tð Þ � YN

i tð Þk
� �

¼ 1
N

XN
i¼1

E sup
t2 0;T½ �

kXN
i tð Þ � YN

i tð Þk
� �

:

Let us start with

E sup
t2 0;T½ �

kXN
i tð Þ � YN

i tð Þk
� �

6E
ðT
0
kXN

i tð Þ � YN
i tð Þkdt

" #
þVXN

i ;Y
N
i
Tð Þ þUXN

i ;Y
N
i
Tð Þ;

where, for simplicity, we have set:
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VXN
i ;Y

N
i
ðTÞ :¼ E

"
sup
t2½0;T�

�����E½V�N

XN
j¼1

ðt
0
kðXN

j ðsÞÞ � kðYN
j ðsÞÞds

þ 1
N

X
j6¼i

ðt
0

ð
½0;1�N

ð1
0
Vðhi; hjÞl½0;kðXN

j ðsÞÞðuÞeN jðds; du; dhÞ
�����
#
;

UXN
i ;Y

N
i
ðTÞ :¼ E

"
sup
t2½0;T�

������
ðt
0

ð
½0;1�N

ð1
0
ðXN

i ðsÞ �UðhiÞÞl½0;kðXN
i ðsÞÞÞðuÞ

�ðYN
i ðsÞ�UðhiÞÞl½0;kðYN

i ðsÞÞÞðuÞN iðds; du; dhÞ
�����
#
:

With the notation of Lemma 5.5, we consider the positive constant HT and the event

EN :¼ CN Tð Þ
N

6HT

	 

\

ðT
0
hlNY sð Þ; kids6HT

( )
;

so that PðEc
NÞ ! 0 for N ! 1: Obviously, under the event EN, for all i ¼ 1; :::;N, the

quantities supt2½0;T� kðXN
i ðtÞÞ and supt2½0;T� kðYN

i ðtÞÞ are uniformly bounded and we can
exploit local Lipschitzianity of k (we will indicate its Lipschitz constant as LHT). Thus,
we bound the first terms in VXN

i ;Y
N
i
ðTÞ in the following way:

E sup
t2 0;T½ �

E V½ �
N

XN
j¼1

ðt
0
k XN

j sð Þ
� �

� k YN
j sð Þ

� �
ds

�����
�����

24 35
6E kVk½ �

N

XN
j¼1

E
ðT
0
LHTkXN

j sð Þ � YN
j sð Þkds

 !
lEN

" #

þE kVk½ �E Ð T
0

1
N

XN
j¼1

k XN
j sð Þ

� ���� ���þ jk YN
j sð Þ

� �
jds

0@ 1AlECN

24 35
6LHTE kVk½ �

ðT
0

1
N

XN
j¼1

E sup
s2 0;t½ �

kXN
j sð Þ � YN

j sð Þk
� �

dt

þ Ð T0 E kVk½ �
N

XN
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P EC

N

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½jkðXN

j ðsÞÞj2�
q

ds

þ Ð T0 E½kVk�
N

XN
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEC

NÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½jkðYN
j ðsÞÞj2�

q
ds

6LHTE½kVk�
ðT
0

1
N

XN
j¼1

E sup
s2½0;t�

kXN
j ðsÞ � YN

j ðsÞk
" #

dt

þ
ðT
0
E½kVk�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEC

NÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½hlNXðsÞ; jkð�Þj2i�
q

ds

þ
ðT
0
E½kVk�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEC

NÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½hlNY ðsÞ; jkð�Þj2i�
q

ds:

By Lemma 5.4 there exists N0>0 such that for all N>N0 suptP0 E½hlNXðsÞ; jkð�Þ 2i�j and
suptP0 E½hlNY ðsÞ; jkð�Þ 2i�j are bounded. By Lemma 5.5, there exists a constant KTP0 such
that PðEC

NÞ6 KT
N . The second term in VN

XN
i ;Y

N
i
ðTÞ is bounded using Burkholder–Davis–Gundy

inequality, the orthogonality of the martingales feN jgj2N and Lemma 5.4.
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E sup
t2 0;T½ �

1
N

XN
j6¼1

ðt
0

ðt
0

ð
0;1½ �N

ð1
0
V hi; hj
� �

l 0;k XN
j sð Þð Þð � uð ÞeN j

ds; du; dhð Þ
������

������
264

375
6M

N
E

XN
j 6¼i

ðT
0
E kVk2
� �

k XN
j sð Þ

� �
ds

0@ 1A1=2
264

3756M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E kVk2
� �
N

s
E

ðT
0
hlNX tð Þ; k �ð Þidt

 !1=2
24 35:

Therefore we get that there exist two constants CT and KT such that, for all N>N0,

VN
XN
i ;Y

N
i
Tð Þ6CT

ðT
0
E sup

s2 0;t½ �
kXN sð Þ � YN sð Þk2

� �
dtþ KTffiffiffiffi

N
p :

With a similar argument, we get a bound of the same type for UXN
i ;Y

N
i
ðTÞ:

1
N

XN
i¼1

UXN
i ;Y

N
i
ðTÞ6CT

ðT
0

1
N

XN
i¼1

kXN
i ðtÞ�YN

i ðtÞkdtþ E lECN

ðT
0

1
N

XN
i¼1

kXN
i ðtÞkkðXN

i ðtÞÞdt
" #

þE 1ECN

ðT
0

1
N

XN
i¼1

kYN
i ðtÞkkðYN

i ðtÞÞdt
" #

þ E½kUk�E lECN

ðT
0

1
N

XN
i¼1

kðXN
i ðtÞÞdt

" #

þE½kUk�E 1ECN

ðT
0

1
N

XN
i¼1

kðYN
i ðtÞÞdt

" #
:

As before, we wish to get a bound of the order Oð 1ffiffiffi
N

p Þ for the last terms. We do that
by means of Cauchy–Schwartz inequality, Lemmas 5.4 and 5.5. We also exploit that, by
definition of k, it holds kxk6BkðxÞ þ c for some positive constant B and a constant c.
Take, for instance, the second term of the right-hand side:

E 1ECN

ðT
0

1
N

XN
i¼1

����XN
i ðtÞ

����kðXN
i ðtÞÞdt

" #
6
ðT
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEC

NÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
1
N

XN
i¼1

����XN
i ðsÞ

����kðXN
i ðsÞÞ

 !2" #vuut ds

6T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEC

NÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E sup
t2½0;T�

hlNXðtÞ; k � k2ihlNXðtÞ; kð�Þ2i
" #vuut 6T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEC

NÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E sup
t2½0;T�

hlNXðtÞ; kð�Þ4i
" #vuut :

The same holds for the remaining right-hand side terms. Thus, there exist two con-
stants eCT and eKT and a N0>0, such that for all N>N0 it holds

1
N

XN
i¼1

UXN
i ;Y

N
i
Tð Þ6eCT

ðT
0
E sup

s2 0;t½ �
kXN sð Þ � YN sð Þk

� �
dtþ

eKTffiffiffiffi
N

p :

It follows that there exist two constants, depending only on T, which by abuse of
notation we will indicate by CT and KT, and N0>0 such that, for all N>N0 it holds

E sup
t2 0;T½ �

kXN tð Þ � YN tð Þk
� �

6CT

ðT
0
E sup

s2 0;t½ �
kXN sð Þ � YN sð Þk

� �
dtþ KTffiffiffiffi

N
p :

By applying Gronwall’s lemma we get the thesis.

Theorem 5.7 (Propagation of Chaos for YN). Grant Assumptions 4 and 2. Let l be a
probability measure on R

d with compact support. For N 2 N, let YN be a solution of
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Equation (19) in ½0;T�. Assume that YNð0Þ ¼ ðYN
1 ð0Þ; :::;YN

Nð0ÞÞ, N 2 N, form a sequence
of integrable random vectors that is l-chaotic in W1. Let Q be the law of the solution of
Equation (16) in ½0;T� with initial law P
Xð0Þ�1 ¼ l. Then YN is Q chaotic in W1.

The proof of this theorem is a combination of the computations done for proving
Theorem 5.6 and the coupling techniques for propagation of chaos used in the previous
sections. Again, this implies propagation of chaos for XN.

Corollary 5.8 (Propagation of Chaos for XN). Grant Assumptions 4 and 2. Let l be a
probability measure on R

d with compact support. For N 2 N, let XN be a solution of
Equation (14) in ½0;T�. Assume that XNð0Þ ¼ ðXN

1 ð0Þ; :::;XN
Nð0ÞÞ, N 2 N, form a sequence

of integrable random vectors that is l-chaotic in W1. Let Q be the law of the solution of
Equation (16) in ½0;T� with initial law P
Xð0Þ�1 ¼ l. Then XN is Q chaotic in W1.
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Appendix A

Appendix for Section 4

We gather in this subsection some lemmas useful to the analysis of the nonlinear stochastic differen-
tial equation in the case of the non-globally Lipschitz drift condition stated in (U). These lemmas
rely on the procedure of constructing iteratively the solution by pasting together the diffusive paths
between two successive jump times and exploiting the finite intensity of the jump process. The same
approach has been used to define branching Markov processes [22–24]. Here, we consider a proced-
ure of this type where the process has an additional dependence on an external flow of measures
that parametrizes the solution and will play a crucial role in the proof of Theorem 4.1.

Lemma A.1. Consider the SDE parametrized by a measure a 2 M1ðDð½0;T�;RdÞÞ
dX tð Þ ¼ F X tð Þ; atð Þdtþ r X tð Þ; atð ÞdBt

þ
ð
0;1½ Þ� 0;1½ �N

w X t�ð Þ; at� ; h1ð Þl 0;k X t�ð Þ;at�ð Þð � uð ÞN dt; du; dhð Þ: (20)

If the coefficients satisfy Assumption 3, then for every a 2 M1ðDð½0;T�;RdÞÞ and every square-
integrable initial condition, there exists a unique strong solution to Equation (20).

Proof. First let X1 and X2 be two integrable stochastic processes on ½0;T� with values in R
d. We

define the map that associates the law of Xk to the law of the solution of

dYk tð Þ ¼ F Yk tð Þ; at
� �

dtþ r Yk tð Þ; at
� �

dBt

þ
ð
0;1½ Þ� 0;1½ �N

w Xk t�ð Þ; at� ; h1
� �

l 0;k Xk t�ð Þ;at�ð Þð � uð ÞN dt; du; dhð Þ; (21)

which is well defined by Lemma A.2. With the same computation of the proof of Theorem 4.1,
we get that, for a small enough T0>0, there exists a constant CT0<1 such that
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E sup
t2 0;T0½ �

kY1 tð Þ � Y2 tð Þk
� �

6CT0E sup
t2 0;T0½ �

kX1 tð Þ � X2 tð Þk
� �

:

This shows pathwise uniqueness for solution of (20). By means of (21), we define a Picard iter-
ation argument that gives a sequence of laws fQngn2N on Dð½0;T�;RdÞ. Again, there exists a
T0>0 small enough such that fQngn2N is a Cauchy sequence for qT0

and hence for a weaker but
complete Wasserstein metric on M1ðDð½0;T0�;RdÞÞ. Iterating the procedure over a finite number
of time intervals, to cover ½0;T�, yields the thesis.

The integrability property is proved as in the proof of Lemma A.2.

Remark A.1. Notice that, in the proof of Lemma A.1, we need to define the map by means of
(21) and not simply by substituting Xk in the whole right-hand side of (20). In fact, we need to
control the jumps by means of a known process, but at the same time, we need to have the same
variable as argument of the drift coefficient to exploit the convexity of the potential function U.

Lemma A.2. Consider the SDE parametrized by two measures a and b 2 M1ðDð½0;T�;RdÞÞ
dX tð Þ ¼ F X tð Þ; atð Þdtþ r X t�ð Þ; atð ÞdBt

þ
ð
0;1½ Þ� 0;1½ �N

w Y t�ð Þ; at� ; h1ð Þ1 0;k Y t�ð Þ;at�ð Þð � uð ÞN dt; du; dhð Þ; (22)

where fYðtÞgt2½0;T� is a progressively measurable process with law b. If the coefficients satisfy
Assumption 3, then for every a and b 2 M1ðDð½0;T�;RdÞÞ, every square-integrable initial condi-
tion, there exists a unique strong solution to Equation (22).

Moreover, let l¼: LawððXðtÞÞt2½0;T�Þ be the law of the solution of (22) starting from the square-
integrable initial condition Xð0Þ l0-distributed, then l 2 M1ðDð½0;T�;RdÞÞ.

Proof. Let B be an ðFtÞ-Brownian motion, p be a ðFtÞ-stationary Poisson point process with char-
acteristic measure l� � and Dp ¼: ft 2 ½0;T� : pðtÞ 2 ð0;1Þ � ½0; 1�Ng and n be a F0-measurable
square-integrable r.v. Let D¼: fs 2 Dps:t:pðsÞ 2 �Us ¼ ð0; kðYðs�Þ; as�Þ� � ½0; 1� � ½0; 1� � � � �g.
Let us call r1<r2<::: the elements of D. Each rn is an Ft -stopping time and limn!1 rn ¼ 1
a.s. Indeed, for every T>0 and for a fixed n 2 N

�,

P rn6Tð Þ ¼ P
ðT
0

ð
0;1½ Þ� 0;1½ �N

l 0;k Y t�ð Þ;at�ð Þð � uð ÞN du; dh; dtð ÞPn

 !
6
E
Ð T
0 k Y tð Þ; atð Þdt

h i
n

6CT

n
;

for a certain constant CT and by Borel–Cantelli, we get the claim. Then we start by showing
existence and uniqueness of solutions to (22) on ½0;r1�. Consider the equation

Z tð Þ ¼ nþ
ðt
0
F Z sð Þ; asð Þdsþ

ðt
0
r Z s�ð Þ; asð ÞdBs: (23)

Existence and uniqueness of a strong solution for (23) are ensured by the classical
Hasminskii’s test for non-explosion (see e.g. [25] with the Lyapunov function VðzÞ¼ kzk2). The
test’s conditions are guaranteed by the inequality

sup
a2M1

R
dð Þ
z � F z; að Þ þ tr r z; að ÞrT z; að Þ

� �
6C 1þ kzk2
� �

; (24)

for some C>0, for all z 2 R
d. Indeed, fix an a 2 M1ðRdÞ. Then, under ðUÞ from Assumption 3,

we have

z � F z; að Þ ¼ � z� 0ð Þ � �U zð Þ��U 0ð Þ� �þ z ��U 0ð Þ þ z � b z; að Þ6C kzk2 þ 1
� �

;

due to the convexity of U and the linear growth of b. A similar bound is obtained for the second
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summand in the l.h.s of (24), which has uniform quadratic growth in the z variable. Then, for
every integrable initial condition, there exists a unique strong solution to (23). Let p1 be the pro-
jection defined as

p1 : 0; 1½ �N � 0;1½ Þ 7! 0; 1½ �
h; uð Þ ! h1:

Set

X1 tð Þ :¼ Z1 tð Þ t 2 0; r1½ Þ;
Z1 r�1ð Þ þ w Y r�1ð Þ; a r�1ð Þ; p1
p r1ð Þ� �

t ¼ r1;

(
(25)

where fZ1ðtÞgtP0 is the solution of (23) with initial condition Z1ð0Þ ¼ n a.s. We see that X1ðtÞ is
solution of (22) for t 2 ½0;r1�. We iterate the procedure by setting �n¼: X1ðr1Þ,
�B¼: ðBðtþ r1Þ�Bðr1ÞÞtP0 and �p¼: ðpðtþ r1ÞÞtP0. We define �X1ðtÞ for t 2 ½0; �r1� as we did for
X1ðtÞ in (25), where �r1 is the smallest time such that �ps belongs to �Ur1þs and coincides with
r2�r1. We define

X2 tð Þ :¼ X1 tð Þ t 2 0;r1½ �;
�X1 t�r1ð Þ t 2 r1;r2½ �:

	
Clearly X2 is solution of (22) for t 2 ½0;r2�. Since limn!1 rn ¼ 1 a.s., we can iterate this pro-

cedure to cover the entire time interval ½0;T�.
To prove that the law l of a solution of (22) belongs to M1ðDð½0;T�;RdÞÞ, we will show that

there exists a filtered probability space ðX;P; ðF tÞ;FÞ, with a F t-Brownian motion B, an adapted Ft
Poisson random measure N with characteristic measure l� l� � and a F0-measurable initial condi-
tion Xð0Þ l0-distributed such that E½supt2½0;T� kXðtÞk�<1. We consider the process XðtÞ, for all
tP0, solution of (22) and for all K>0 we define the stopping time sK :¼ infftP0 : kXðtÞkPKg.
We apply Ito’s rule to the smooth approximation f � of k � k and taking the limit for � # 0, to exploit
the properties of the potential function U. For the details of the approach, see the proof of Theorem
4.1. By monotone convergence of f �ðxÞ to kxk, we get, for all t 2 ½0;T�,

E l t6sKð ÞkX tð Þk� �
6 liminf

�#0
E l t6sKð Þf � X tð Þð Þ� �

6 liminf
�#0

E f � X t� sKð Þð Þ� �
;

and by the optional stopping theorem, we have that there exist three positive constants D1, D2

and D3 such that

E l t6sKð ÞkX tð Þk� �
6E kX 0ð Þk� �þD1Tþ D2TE sup

t2 0;T½ �
kY tð Þk

� �
þD1

ðt
0
E 1 s6sKð ÞkX sð Þk� �

ds:

By Gronwall’s lemma, we get the desired bound on E½lðt6sKÞkXðtÞk�, but since it does not
depend on K, we take the limit K % 1 and get the thesis.

Appendix B

Appendix for Section 5

We collect here auxiliary lemmas and proofs for Section 5. First, Lemma B.1 concerns existence
and uniqueness of solutions for the particle system (14) under Assumption 4. Notice that the
same result holds also for the intermediate particle system (19). Then, thanks to two technical
lemmas, we give the proof of Lemma 5.1, crucial for the existence and uniqueness of solution of
the nonlinear process (16). Finally, we give the proofs of Lemma 5.4 and Lemma 5.5 that we use
in the propagation of chaos section. Notice that, the key ingredient here is represented by the
fact that all the main jumps of the processes are such that they make the process go back inside
a compact set (the support of U). To exploit that, we need to apply Ito’s rule for a process with
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jumps (notice that here we do not have a diffusion term). Since all the functions of interest (k � k
and kð�Þ) have singularities in the origin, we use a smooth approximation of the norm k � k. As
in the proof of Theorem 4.1, for all �>0, we define

f � xð Þ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxk2 þ �

q
:

Lemma B.1. Under Assumption 4, for every integrable initial condition XNð0Þ 2 R
d�N, the SDE

(14) admits a unique solution.

Proof. The main issue is represented by the fact that the function k is unbounded and not glo-
bally Lipschitz continuous, indeed when k is bounded existence and uniqueness of solutions for
(14) are consequences of standard results, see [26]. Therefore, let us consider the truncate func-
tion kK ¼: k�K, for K 2 N, and the solution XN;KðtÞ of (14) with the function kK instead of k.
This solution exists and it is unique for all t 2 ½0;T�, moreover, by pathwise uniqueness, it holds
XN;KðtÞ¼ XN;Kþ1ðtÞ for all t 2 sK, where sK ¼: infft =kXN;KðtÞkPKg. Therefore sK6sKþ1 a.s. and
there exists a pathwise unique solution XðtÞ to (14), defined for all t 2 ½0; sÞ, where
s¼: supK2N sK. We are left to prove that Pðs>TÞ ¼ 1.

Let us fix i 2 f1; :::;Ng and �>0. By computing f �ðXN
i ðtÞÞ by means of Ito’s formula, we get

f � XN
i tð Þ� �

6f � XN
i 0ð Þ� �þ 1

N

XN
j¼1

ðt
0

ð
0;1½ �N

ð1
0
f � V hj; hi

� �� �
l 0;k XN

j sð Þð Þð � uð ÞNj ds; du; dhð Þ

þ Ð t0 Ð 0;1½ �N
Ð1
0 f � U hið Þð Þ � f � XN

i sð Þ
� �� �

l 0;k XN
i sð Þð Þð � uð ÞNi ds; du; dhð Þ:

Therefore, summing on all i ¼ 1; :::;N and taking expectation, by the application of Fatou’s
lemma we get:

E
1
N

XN
i¼1

jjXN
i ðtÞk

" #
6 liminf

�#0

 
E

1
N

XN
i¼1

f �ðXN
i ð0ÞÞ

" #

þ
ðt
0
ðE½f �ðVÞ� þ E½f �ðUÞ�ÞE 1

N

XN
i¼1

kðXN
i ðsÞÞ

" #
�E

1
N

XN
i¼1

f �ðXN
i ðsÞÞkðXN

i ðsÞÞ
" #

ds

!
Then, by monotone convergence, we have

E
1
N

XN
i¼1

jjXN
i ðtÞk

" #
6E

1
N

XN
i¼1

jjXN
i ð0Þk

" #

þ
ðt
0
ðE½kVk� þ E½kUk�ÞE 1

N

XN
i¼1

kðXN
i ðsÞÞ

" #
�E

1
N

XN
i¼1

jjXN
i ðsÞkkðXN

i ðsÞÞ
" #

ds:

Since b is increasing and h is bounded, there exists a positive constant C, depending on

E 1
N

PN
i¼1

kXN
i 0ð Þk

" #
, such that

sup
tP0

E
1
N

XN
i¼1

kXN
i tð Þk

" #
6C;

implying Pðs>TÞ ¼ 1.

The proof of existence and uniqueness of solutions of (16) for compact support initial condi-
tion relies on a straightforward adaptation of the arguments of [10] to our framework, therefore
we write the proof of Lemma 5.1 only for completeness.

Proof of Lemma 5.1. We want to get an almost sure bound for kZfðtÞk, in order to use locally
Lipschitzianity of k in the following computations. Intuitively, the jumps have an increasing role
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only if we are inside the support of the random variable U, otherwise they force the norm to
decrease. Therefore, a.s., we can bound the process kZfðtÞk with the deterministic expression

K0 þ
ðt
0
kf sð Þkds;

where K0 :¼ maxfkxk; suph2½0;1� kUðhÞkg. This almost sure bound for kZfðtÞk and the continuity
of the coefficients ensure the existence and uniqueness of a non-explosive solution Zf on ½0;T�.
Let Zf and Zg two solutions of (17) corresponding to two different locally bounded Borellian
functions f and g. The almost sure bounds on kZfðtÞk and kZgðtÞk let us define two positive con-
stant bf ;gðTÞ and Lf ;gðTÞ, such that we have

E sup
t2 0;T½ �

kZf tð Þ � Zg tð Þk
� �

6
ðT
0
E sup

s2 0;t½ �
kZf sð Þ � Zg sð Þk

� �
dsþ

ðT
0
sup
s2 0;t½ �

kf sð Þ�g sð Þkdt

þE
ðT
0

ð
0;1½ �� 0;1½ Þ

k Zf s
�ð Þ �U hð Þ� �

1 0;k Zf s�ð Þð Þ½ Þ uð Þ � Zg s�ð Þ �U hð Þ� �
l 0;k Zg s�ð Þð Þ½ Þ uð Þkdsdu�1 dhð Þ

" #
6
ðT
0
E sup

s2 0;t½ �
kZf sð Þ � Zg sð Þk

� �
dsþ

ðT
0
sup
s2 0;t½ �

kf sð Þ�g sð Þkdt

þ bf ;g Tð Þ þH
� � ðT

0
E sup

s2 0;t½ �
kZf sð Þ � Zg sð Þk

� �
ds

þLf ;g Tð Þ K0 þ
ðt
0
kf sð Þkds

 !ðT
0
E sup

s2 0;t½ �
kZf sð Þ � Zg sð Þk

� �
ds:

We apply now Gronwall lemma and we obtain (18).

The proof of Lemma 5.2 requires two technical lemmas adapted to our case from [10].

Lemma B.2. Let xðtÞ be a non-negative C1 function on Rþ. If the following inequality holds for
any 06s6t:

x tð Þ6x sð Þ��K
ðt
s
xk uð Þduþ

ðt
s
Pd x uð Þð Þdu

where k; �K>0 and Pdð�Þ is a polynomial of degree d<k, then

sup
tP0

x tð Þ6C0<1:

Proof. Consider that for x ! 1, then

��KxkþPd xð Þ ! �1:

Therefore it exists a value �C0 such that, as soon as the trajectory exceeds �C0P0 its derivative
becomes strictly negative and the trajectory is forced toward zero. Thus, defining

C0 :¼ max �C0; x 0ð Þ� �
;

we get the desired bound.

Lemma B.3. If the function b satisfies the assumption (15), then for any �>0 and p 2 ½1; 4þ 2��,
there exists a constant c1<ð4þ 2�Þc, c1>0 and a value g>0, such that, for all a 2 R

d with kak6g
and for all x 2 R

d, it holds

bp kxþ akð Þ � bp kakð Þj j6kak c1b
p kxkð Þþc1

� �
:
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Proof. The proof of this lemma comes directly from Lemma 8 in the appendix of [10].

Notice that the constant c1<ð4þ 2�Þc, together with the condition of Lemma B.2 on the positivity
of the coefficient �K, cause the condition on c w.r.t E½kVk� in Assumption 4. This condition plays a
crucial role in all the proofs of the boundedness for the moments of kðXðtÞÞ and of kðXN

i ðtÞÞ for all
i. Now that we have stated these two results, we are ready to prove Lemma 5.2, that provides a priori
uniform bounds on the first moment of the solution to (16) and on the moments of kðXðtÞÞ.
Proof of Lemma 5.2. Fix �>0, by means of Ito’s rule, we have

E f � X tð Þð Þ½ �6E f � X 0ð Þð Þ½ �� Ð t0 E f � kX sð Þk� �� �
dsþ Ð t0 E E kVk½ � þ E kUk½ � � f � X sð Þð Þ� �

h X sð Þð Þ� �
ds

þ Ð t0 E b kX sð Þk� �
E kVk½ � þ E kUk½ � � f � X sð Þð Þ� �h i

ds:

From the monoticity assumption on b, we know that there exist K>0 and bP0 such that
bðrÞðE½kVk� þ E½kUk� � rÞ6�Krþ b. Therefore, by Fatou’s lemma and the monotone conver-
gence theorem,

E kX tð Þk� �
6E kX 0ð Þk� �þ ðt

0
H E kVk½ � þ E kUk½ �ð Þ þ b½ �ds�K

ðt
0
E kX sð Þk� ��ds;

that gives the boundedness of suptP0 E½kXðtÞk�.
Let p ¼ 1, clearly, to get a bound for E½kðXðtÞÞ�, it is sufficient to bound E½bðkXðtÞkÞ�. Thus,

again, we use Ito’s rule to compute bðf �ðXðtÞÞÞ for �>0.

E b f � X tð Þð Þð Þ½ �6E b f � X 0ð Þð Þð Þ½ �� Ð t0 E b0 f � X sð Þð Þ� � kX sð Þk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kX sð Þk2 þ �

q24 35ds
þ
ðt
0
E b0 f � X sð Þð Þ� �

E b kX sð Þk� �� � X sð Þ � E V½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kX sð Þk2 þ �

q24 35dsþH
ðt
0
E b0 f � X sð Þð Þ� � X sð Þ � E V½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kX sð Þk2 þ �
q24 35ds

þ
ðt
0
E b kX sð Þk� �� �

E b f � Uð Þð Þ½ �dsþ
ðt
0
E h X sð Þð Þ½ �E b f � Uð Þð Þ½ �ds

�
ðt
0
E b f � X sð Þð Þ� �

b kX sð Þk� �h i
ds�

ðt
0
E b f � X sð Þð Þ� �� �

E h X sð Þð Þ½ �ds:

Again we use Fatou’s lemma and monotone convergence theorem (indeed bðf �ð�ÞÞ converges
monotonically to bðk � kÞ, thanks to the increasing property of b). Since b0 is positive, we disre-
gard the second term, we use properties of b0 to bound the remaining terms and we get

E b kX tð Þk� �� �
6E b kX 0ð Þk� �� �þ HcE kVk½ � þHE b kUkð Þ½ �ð Þtþ cE kVk½ � � 1ð Þ Ð t0 E b kX sð Þk� �� �2

ds

cE kVk½ � þHcE kVk½ � þ E b kUkð Þ½ � þHð Þ Ð t0 E b kX sð Þk� �� �
ds:

With Lemma B.2 we conclude the boundedness for E½bðkXðtÞkÞ�. The same argument is used
to get a uniform bound for E½bpðkXðtÞkÞ� when p ¼ 2; 3; 4.

While the uniform bounds for E½kXðtÞk� and E½bðkXðtÞkÞ� are needed for the well-posedness
of the nonlinear process itself, higher moments of k are needed only for the proof of propagation
of chaos. The same a priori bounds for the moments of k appear also in the case of the particle
system. Their proof is similar to the nonlinear case, relies on Lemmas B.2 and B.3, together with
an argument based on orthogonal martingales.

Proof of Lemma 5.4. We only prove it for lNX , then for lNY the steps are basically the same. Of
course it is sufficient to prove the boundedness of supNPN0

suptP0 E½hlNXðtÞ; b4ðfdð�ÞÞi�. Let us
define for K>0 the stopping time sK :¼ infftP0 : hlNXðtÞ; b5ðfdð�ÞÞiPKg. Obviously the random
variables hlNXðt�sKÞ; bpðfdð�ÞÞi for 16p65 and hlNXðt�sKÞ; fdð�Þi are integrable. Recall that, for all
�>0, the process fMN

� ðtÞgtP½0;T�, where, for t 2 ½0;T� we have
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MN
� tð Þ¼: hlNX tð Þ; f � �ð Þi�hlNX 0ð Þ; f � �ð Þi þ 1

N

XN
i¼1

ðt
0

kXN
i sð Þk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kXN
i sð Þk2 þ �

q ds

0@ 1A
� 1
N

XN
i¼1

X
j6¼i

ðt
0

ð
0;1½ �N

k XN
j sð Þ

� �
f � XN

i sð Þ þ V hi; hj
� �
N

� �
� f � XN

i sð Þ
� �� �

� dhð Þds

� 1
N

XN
i¼1

ðt
0

ð
N

0;1½ �
k XN

i sð Þ
� �

f � U hið Þð Þ � f � XN
i sð Þ

� �� �
� dhð Þds;

is a martingale. Then, from the optional stopping theorem, we have

E hlNX t� sKð Þ; f � �ð Þi
� �

6E hlNX 0ð Þ; f � �ð Þi
� ��E

Ð t� sK
0 hlNX sð Þ; f � �ð Þids

h i
þNE

Ð t� sK
0 hlNX sð Þ; k �ð ÞihlNX sð Þ; Ð 0;1½ �2 f

� � þ V h1; h2ð Þ
N

� �
� f � �ð Þ�2 dhð Þids

� �
�E

Ð t� sK
0 hlNX sð Þ; k �ð Þ

Ð
0;1½ �f

� � þ V h1; h1ð Þ
N

� �
� f � �ð Þ�1 dhð Þids

� �
þE

Ð t� sK
0 E f � Uð Þ½ �hlNX sð Þ; k �ð Þi � hlNX sð Þ; k �ð Þf � �ð Þids

h i
:

Again, we use the monotone convergence of f �ðxÞ to kxk, to get

E 1 t6sKð ÞhlNX tð Þ; k � ki� �
6 liminf

�#0
E 1 t6sKð ÞhlNX tð Þ; f � �ð Þi
h i

6 liminf
�#0

E hlNX t� sKð Þ; f � �ð Þi
h i

:

By arguments close to the one in the proof of Lemma 5.2, there exists K>0 and b>0, such
that we get the following inequality

E l t6sKð ÞhlNX tð Þ; k � ki� �
6E hlNX 0ð Þ; k � ki� �

þ Ð t0 E l s6sKð ÞhlNX sð Þ; E kVk½ � þ E kVk½ �
N

þ E kUk½ � � k � k
� �

k �ð Þi
� �

ds

6E lNX 0ð Þ; k � ki� �þ H E kVk½ � þ E kVk½ �
N

þ E kUk½ �
� �

þ b

� �
t

�K
Ð t
0 E 1 s6sKð ÞhlNX sð Þ; k � ki� �

ds:

This, together with Lemma B.2, gives the boundedness of suptP0 E½1ðt6sKÞhlNXðtÞ; k � ki�. Since
this bound does not depend on K, letting K go to infinity gives the bound on
suptP0 E½hlNXðtÞ; k � ki�. Now we apply the same argument to the martingale fMN

b4
ðtÞgtP½0;T�. By

deleting some of the negative terms, applying Lemma B.3 and repeating the previous steps, we
obtain the following bound

E l sK6tð ÞhlNX tð Þ; b4 k � kð Þi� �
6E hlNX 0ð Þ; b4 k � kð Þi� �

þc1E kVk½ �
ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð ÞihlNX sð Þ; b k � kð Þi� �

ds

þHc1E kVk½ �
ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �

ds

þc1E kVk½ �
ðt
0
E l s6sKð ÞhlNX sð Þ; b k � kð Þi� �

dsþ c1HE kVk½ �
ðt
0
E 1 s6sKð Þ½ �ds

þc1
E kVk½ �

N

ðt
0
E l s6sKð ÞhlNX sð Þ; b5 k � kð Þi� �

dsþ c1
E kVk½ �

N

ðt
0
E l s6sKð ÞhlNX sð Þ; b k � kð Þi� �

ds

þHc1
E kVk½ �

N

ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �

dsþ c1H
E kVk½ �

N

ðt
0
E l s6sKð Þ½ �ds

þE b4 kUkð Þ
� � ðt

0
E l s6sKð ÞhlNX sð Þ; b k � kð Þi� �

dsþ E b4 kUkð Þ
� �

Ht

�
ðt
0
E l s6sKð ÞhlNX sð Þ; b5 k � kð Þi� �

dsþH
ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �

ds:
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By H€older and Jensen inequalities, we get the following expression

E hl sK6tð ÞlNX tð Þ; b4 k � kð Þi� �
6E hlNX 0ð Þ; b4 k � kð Þi� �

þc1E kVk½ �
ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �5=4

dsþHc1E kVk½ �
ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �

ds

þc1E kVk½ �
ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �1=4

dsþ c1HE kVk½ �t

þc1
E kVk½ �

N

ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �1=4

dsþHc1
E kVk½ �

N

ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �

ds

þ c1H
E kVk½ �

N
þ E b4 kUkð Þ

� �� �
tþ E b4 kUkð Þ

� � ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi1=4
h i

ds

þH
ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �

dsþ c1
E kVk½ �

N
� 1

� �ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �5=4

ds;

where we have exploited the fact that ðc1 E½kVk�
N � 1Þ<0, for N large enough, and that

hlNXðsÞ; b5iPhlNXðsÞ; b4i5=4. Reordering, we get

E l sK6tð ÞhlNX tð Þ; b4 k � kð Þi� �
6hE lNX 0ð Þ; b4 k � kð Þi� �

þ c1E kVk½ �þc1
E kVk½ �

N
þ E b4 kUkð Þ

� �� � ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �1=4

ds

þ Hc1E kVk½ �þHc1
E kVk½ �

N
þH

� �ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �

ds

þ c1E kVk½ �þc1
E kVk½ �

N
� 1

� �ðt
0
E l s6sKð ÞhlNX sð Þ; b4 k � kð Þi� �5=4

ds:

Since, by hypothesis, there exists N0 such that, for all NPN0 it holds

c1E kVk½ �þc1
E kVk½ �

N
� 1

� �
<0;

we use Proposition B.2 and this gives a bound on E½lðt6sKÞhlNXðtÞ; b4ðk � kÞi� independent of N
and K; therefore letting K go to infinity proves the thesis.

As mentioned before, Lemma 5.4 plays a crucial role in the proof of Lemma 5.5, where we
bound the number of jumps of a single particle for the particle system (14) and the contribution
of the collateral drift term for the particle system (19).

Proof of Lemma 5.5. We develop the computations for the proof just in the case of (14), since
for the system (19) they are almost the same. Let us start by describing the quantity CNðTÞ, that
is

CN Tð Þ ¼
XN
i¼1

ðT
0

ð
0;1½ �N

ð1
0
l 0;k XN

i sð Þð Þ uð ÞNi ds;du;dhð Þ:½

We can rewrite this quantity as the sum of orthogonal martingales, that we will indicate as
MNðtÞ, plus a term depending on the empirical measure, as follows:

CN Tð Þ
N

¼ 1
N

XN
i¼1

ðT
0

ð
0;1½ �N

ð1
0
l

0;k XN
ið Þ sð Þ uð ÞeN i

ds;du;dhð Þþ
Ð T
0
hlNX sð Þ;k �ð Þids¼: MN Tð Þþ

Ð T

0
hlNX sð Þ;k �ð Þids:

h
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Let us consider a positive constant HT>0, then

P
CN Tð Þ
N

PHT

� �
6P sup

t6T
MN tð ÞPHT

2

 !
þ P

ðT
0
hlNX sð Þ; kidsPHT

2

 !
:

Of course, since fMNðtÞgt2½0;T� is a martingale, by Chebychev and Doob inequalities we have
that

P sup
t2 0;T½ �

MN tð ÞPHT

2

 !
6 4

H2
T

E sup
t2 0;T½ �

MN tð Þ
� �2� �

6 4

H2
T

E hMN Tð Þi
� �

:

By the orthogonality of the martingales, however, we have that

hMN Tð Þi
� �

6
E
Ð T
0 hlNX sð Þ; kids

h i
N

:

This, together with Lemma 5.4, implies that, for all N sufficiently large, there exists a constant
CT such that

P sup
t6T

MN tð ÞPHT

2

 !
6CT

N
:

Therefore, we want to get a bound for the probability PðÐ T0 hlNXðsÞ; kidsPHTÞ. Let d>0 be
fixed, the first step consists in proving that there exists CT>0 such that exists CT>0 such that

E sup
t2 0;T½ �

MN
b;d tð Þ2

� �
6E hMN

b;d Tð Þi
h i

6CT

N
;

where fMN
b;dðtÞgt2½0;T� is the martingale arising from the compensated Poisson measure in the

computation of hlNXðtÞ; bðfdð�ÞÞi with Ito rule, that is

MN
b;dðtÞ¼:

1
N

XN
i¼1

ðt
0

ð
½0;1�N

ð1
0
lð0;kðXN

i ðsÞÞ�½bðf
dðUðhiÞÞÞ � bðfdðXN

i ðsÞÞÞ

þPj 6¼i bðfdðXN
j ðsÞ þ

Vðhi; hjÞ
N

ÞÞ�bðfdðXN
j ðsÞÞÞ�eN iðds; du; dhÞ

and hMN
b;dðtÞi is its quadratic variation. We use the fact that feN igi¼1;2::: is a family of orthogonal

martingales, therefore

hMN
b;dðtÞi ¼

1

N2

XN
i¼1

ðt
0

ð
½0;1�N

kðXN
i ðsÞÞ½bðfdðUðhiÞÞÞ � bðfdðXN

i ðsÞÞÞ

þPj6¼i bðfdðXN
j ðsÞ þ Vðhi;hjÞ

N ÞÞ�bðfdðXN
j ðsÞÞÞ�2�ðdhÞds:
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Let us write hMN
b;dðtÞi¼: 1

N2

PN
i¼1 M

N
b;d;iðtÞ, we fix i and we compute Mb;d;iðtÞ as follows.

Mb;d;i tð Þ62
ðt
0

ð
0;1½ �N

b fd XN
i sð Þ

� �� �
b2 fd Uð Þ
� �

þHb2 fd Uð Þ
� �

þb3 fd XN
i sð Þ

� �� �
þHb2 fd XN

i sð Þ
� �� �

� dhð Þds

þ
ðt
0

ð
0;1½ �N

b fd XN
i sð Þ

� �� �
N�1ð Þ

X
j6¼i

fd Vð Þ
N

c1b fd XN
j sð Þ

� �� �
þc1

� �� �2

� dhð Þds

þ
ðt
0

ð
0;1½ �N

H N�1ð Þ
X
j 6¼i

fd Vð Þ
N

c1b fd XN
j sð Þ

� �� �
þc1

� �� �2

� dhð Þds

þ2
ðt
0

ð
0;1½ �N

b fd XN
i sð Þ

� �� �
b fd Uð Þ
� �

�b fd XN
i sð Þ

� �� �� �X
j6¼i

fd Vð Þ
N

c1b fd XN
j sð Þ

� �� �
þc1

� �� �
� dhð Þds

þ2H
ðt
0

ð
0;1½ �N

b fd Uð Þ
� �

�b fd XN
i sð Þ

� �� �� �X
j 6¼i

fd Vð Þ
N

c1b fd XN
j sð Þ

� �� �
þc1

� �� �
� dhð Þds

6 2HE b2 fd Uð Þ
� �� �

þHc21E fd Vð Þ2
� �N�1

N
þ2c1E b fd Uð Þ

� �� �
E fd Uð Þ
� �

H

� �
t

þ 2E b2 fd Uð Þ
� �� �

þ c21E fd Vð Þ2
� �N�1

N
þ2c1E b fd Uð Þ

� �� �
E fd Vð Þ
� �

þ2c1E fd Vð Þ
� �

H

� �ðt
0
b fd XN

i sð Þ
� �� �

ds

þ 2Hþ 2c1E fd Vð Þ
� �� � ðt

0
b2 fd XN

i sð Þ
� �� �

dsþ
ðt
0
b3 fd XN

i sð Þ
� �� �

ds

þ 2c1E b fd Uð Þ
� �� �

E fd Vð Þ
� �

þ2c1E fd Vð Þ
� �

H
� � ðt

0
b fd XN

i sð Þ
� �� �

hlNX sð Þ; b fd �ð Þ
� �

ids

þc21E fd Vð Þ2
� �N�1

N

ðt
0
b fd XN

i sð Þ
� �� �

hlNX sð Þ; b2 fd �ð Þ
� �

ids

þHc1E fd Vð Þ2
� �N�1

N

ðt
0
hlNX sð Þ; b2 fd �ð Þ

� �
idsþ 2c1E b fd Uð Þ

� �� �
E fd Vð Þ
� � ðt

0
hlNX sð Þ; b fd �ð Þ

� �
ids

þ2c1E fd Vð Þ
� � ðt

0
b2 fd XN

i sð Þ
� �� �

hlNX sð Þ; b fd �ð Þ
� �

ids

Summing over all i ¼ 1; :::;N and dividing by N2, we can find four positive constants K1; K2,
K3 and K4 such that hMN

b ðtÞi is bounded by the expression

K1

N
tþ K2

N

ðt
0
hlNX sð Þ; b3 fd �ð Þ

� �
i1=3dsþ K3

N

ðt
0
hlNX sð Þ; b3 fd �ð Þ

� �
i2=3dsþ K4

N

ðt
0
hlNX sð Þ; b3 fd �ð Þ

� �
ids

Using the result of Lemma 5.4, we know that there exists a certain N0, such that the expect-
ation of all the terms involved is bounded uniformly in N>N0. Therefore, for such N we have

E sup
t2 0;T½ �

MN
b;d tð Þ

� �
6CT

N
:

By Chebychev and Doob inequalities this leads to

P sup
t2 0;T½ �

MN
b;d tð ÞP1

� �
6E sup

t2 0;T½ �
MN

b;d tð Þ
� �2" #

6E hMN
b;d Tð Þi

h i
6CT

N
:

Now, we compute hlNXðtÞ; bðfdð�ÞÞi with Ito’s rule that gives the following bound:

hlNX tð Þ; b fd �ð Þ
� �

i6hlNX 0ð Þ; b fd �ð Þ
� �

i þMN
b;d tð Þ þ E fd Vð Þ

� �
c1 1þ 1

N

� �
� 1

� � Ð t
0hlNX tð Þ; b2 fd �ð Þ

� �
ids

þ HE fd Vð Þ
� �

c1 1þ 1
N

� �
þHþ E fd Vð Þ

� �
c1 1þ 1

N

� �
þ E b2 fd Uð Þ

� �� �� � Ð t
0 hlNX tð Þ; b2 fd �ð Þ

� �
i1=2ds

þH E fd Vð Þ
� �

c1 þ E b2 fd Uð Þ
� �� �� �

t:
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Since, by hypothesis, bðfdð�ÞÞ is integrable with respect to the law of Xð0Þ, from the law of
large numbers we know that

P hlNX 0ð Þ; b fd �ð Þ
� �

iP1þ E b fd X 0ð Þð Þ
� �� �� �

6Var b fd X 0ð Þð Þ
� �� �
N

:

Let us consider the event

hlNX 0ð Þ; b fd �ð Þ
� �

i < 1þ E b fd X 0ð Þð Þ
� �� �n o

[ sup
t2 0;T½ �

MN
b;d tð Þ < 1

	 

;

that has a probability greater than 1�2 C
N. Under this event, we apply Lemma B.2 to get a bound

for hlNXðTÞ; bðfdð�ÞÞi.
Since, for all d>0, kð�Þ6bðfdð�ÞÞ þH a.s., this is equivalent to a bound for

supt2½0;T�hlNXðtÞ; kð�Þi, that leads to the existence of a positive constant KT such that

P
ðT
0
hlNX sð Þ; kidsPHT

 !
6KT

N
;

and therefore to the desired bound for PðCNðTÞ
N PHTÞ. w
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