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Abstract. In this paper we propose a simple binary mean field game, where N agents may

decide whether to trade or not a share of a risky asset in a liquid market. The asset’s returns

are endogenously determined taking into account demand and transaction costs. Agents’ utility

depends on the aggregate demand, which is determined by all agents’ observed and forecasted

actions. Agents are boundedly rational in the sense that they can go wrong choosing their

optimal strategy. The explicit dependence on past actions generates endogenous dynamics of the

system. We, firstly, study under a rather general setting (risk attitudes, pricing rules and noises)

the aggregate demand for the asset, the emerging returns and the structure of the equilibria of

the asymptotic game. It is shown that multiple Nash equilibria may arise. Stability conditions

are characterized, in particular boom and crash cycles are detected. Then we precisely analyze

properties of equilibria under significant examples, performing comparative statics exercises and

showing the stabilizing property of exogenous transaction costs.
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1 Introduction

The emergence of the financial crisis of the latest years, posing endogenous risks to the world

economic recovery, seriously challenges the standard optimality properties of first-year-course

like risk allocation models based on frictionless, timeless, market equilibria with homogeneous,

rational and perfectly foresighted agents. Researchers try to explain market’s behavior relax-

ing one or more of the restrictive hypotheses on which models are based. Indeed, agents have

limited information and cognitive ability, form their expectations and behavior following habits

and trends, over or under react to external signals, adjust progressively according to the time

they have and the cost of their choices, just to name some of the most common extensions to

basic market equilibrium analysis. Several financial models, in particular, try to explain the rise

of market cycles that seem not to be related to the oscillation of the fundamentals, overtaking

the agents’ perfect rationality assumption or focusing on external driving forces of individual

behavior. The former approach points at the vast (and perhaps inhomogeneous) bulk of litera-

ture that can be named as behavioral finance1; the latter one explains market values’ dynamics

as a result of the rational decision of agents, who are leaded by some external random vari-

able uncorrelated with fundamentals, i.e., a so-called sunspot2. Both fields of research provide

interesting, rich insights on market dynamics, yet relying on strong and perhaps unnecessary

assumptions that could be relaxed. Behavioral finance interestingly focuses on agents’ bounded

rationality, but it rests on external ad-hoc distinctions between agents’ types (informed and

noise-traders) to give rise to market’s dynamics. Sunspot equilibria models explicitly consider

rational players’ interactions, but rely on exogenous properly-introduced signals as the driving

forces that lead agents’ behavior. In our work, we try to encompass the most interesting features

of both approaches in a innovative framework, that seriously takes into account agents bounded

rationality and, at the same time, explicitly models assets’ returns dynamics and the rise of

booms and crashes in financial markets as the result of market features and agents’ interplay.

The bounded rationality assumption is included in the model considering the social interactions

that arise in repeated people interplay as well as the individual possibility of making mistakes.

1The literature on behavioral finance is too vast to be reviewed here. We refer to books that categorize and

review most common approaches, such as Schleifer (2000) and Thaler (2005), or recent textbooks such as Forbes

(2009).
2Again, the literature on sunspot equilibria is too vast to be reviewed. For introduction, models and references

see for instance Guesnerie (2001), Citanna et al. (2004) and references therein.
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Indeed, tracing back to Föllmer and Schelling seminal contributions3, a recent flow of literature

has focused on the explicit dependence of agents’ behavior on the other people’ s action, i.e.,

on their social interaction, as a driving force of individual binary choices. Nadal et al. (2005),

for instance, consider N agents facing the problem of choosing whether to buy or not a unique

share of a risky asset, whose price P is settled by a monopolistic (exogenous) market maker.

The utility function of each agent depends on a (random) idiosyncratic willingness to pay, on

a social component motivated by an imitation argument and on the exogenous (static) price

P . Bouchaud and Cont (2000) and Cont et al. (2005) follow Föllmer and Schweizer (1993) in

modeling a linear dependence of the price change of the risky asset as a function of the aggregate

demand, emerging from the underlying N dimensional market. The demand for the good is not

driven by an optimization process, but rather by a statistical mechanism. In both papers the

price (or the return) is extrapolated a posteriori as a function of the aggregate demand for the

asset.

We adopt here the same binary choice model framework, assuming that people’s utility depends

on both their own choice and other peoples’ ones. However, differently from the previously cited

literature, we let social interaction affect the individual behavior through the Nash equilibria of

a game representing the market. In other words, we define an endogenous interaction between

market’s dynamics and agents’ expectations. In order to focus on the relationship between social

interaction, bounded rationality and asset dynamics, we do not consider change in values (and

returns) that depend on external, supply-side aspects (such as production costs, firms’ profits,

market structure, and similar), but we assume that market prices and returns are driven by the

demand-side only. This is tantamount to define a liquid market, one in which the value of the

asset does not depend on the probability of closing a trading relationship (as it is, for instance,

in the search-and-matching models)4, but rather on the demand shifts. As for the bounded

rationality assumption, we allow agents to go wrong in their process of making their optimal

choice. This is encompassed in the model assuming that players have a utility function that

has the features of the random utility models for binary choices5. In words, we assume that,

3See Föllmer (1974) and Schelling (1978).
4See Rocheteau and Weill (2011) for a review of applications of search-and-matching models to financial

settings.
5Binary random utility models have been inspired by Schelling (1978), Manski (1988) and McFadden (1974)

and recently formalized in Brock and Durlauf (2001). A dynamic counterpart of this modeling framework can be

found in Blume and Durlauf (2003).
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at discrete times, N agents may decide whether to trade or not a share of a risky asset. Their

utility function depends on the effective return of the asset and there is a random variable that

with some (possibly) positive probability makes them following the opposite choice to the one

that yields the highest utility, i.e., making the wrong one. We study market’s dynamics and in-

dividual expectation that mutually reinforce themselves: if agents believe that the market value

increases, they rise their demand; this spikes the value, which further rises the expectation and

so on. However, at each point in time the value depends on the strategic interactions of agents,

which are functions of their expectations on other agents’ behaviors. The explicit dependence on

past actions generates endogenously the dynamics of the system that are studied in the paper.

These are highly non linear and are hard to be evaluated for a fixed, large N . Therefore, we

let N go to infinity and focus on the asymptotic model, namely, the one with infinite agents.

We first focus on the game played by each agent at each trading date, computing the optimal

share q for the asset (i.e., the proportion of agents that own the asset at the equilibrium), and

the related return R, where the value of the demand q̃ at the previous trading date enters as a

parameter. This gives rise to an implicit dynamic equation connecting q (and thus R) to q̃, of

the form

G(q̃, q) = 0. (1)

This equation does not necessarily produce a well defined dynamical system: given q̃, more

than one solution q may exist. This reflects the fact that multiplicity of Nash equilibria for the

N -dimensional static game may persist in the N → +∞ limit. We focus on the steady states

for (1). In particular, we identify all equilibria for (1), i.e., those q for which G(q̃, q) = 0; we also

give conditions under which the dynamics given by (1) are well defined in a neighborhood of

fixed points, and discuss their local stability. Moreover, we show that, under suitable conditions

on the parameters of the model, cycles of period 2 may arise, and that they may coexist with

stable fixed points.

We are interested also in evaluating to what extent our endogenous dynamics are influenced by

exogenous factors, such as transaction costs. We are motivated by the factual consideration that

in real life settings transaction costs exist and provide a rationale for bid-ask spreads; we are

also inspired by the debate that has recently arisen on the possible stabilizing properties of a

transaction tax like the Tobin one, which might lower the speed of adjustment in markets that

seem to react abruptly to changes in fundamentals, reducing the possibility of generating or

3



propagating a financial contagion. We evaluate to which extent the same effect might be played

by the transaction costs in the dynamics of our model.

Summarizing, we believe that our paper provides significant contributions in at least three

different directions.

• From a microeconomic perspective, we enrich the framework of random utility models à la

Brock and Durlauf (2001), letting the agents update their opinion in a parallel way, i.e.,

their action is the consequence of a game, whose payoffs depend on the expectations on

the behavior of the population.

• From a game theoretical perspective, we provide an existence result of pure strategy Nash

equilibria for a rather large class of binary N -player non-cooperative games. Indeed, it is

a well known result in literature that games in which players have binary strategies not

necessarily have pure strategy Nash equilibria (e.g., the matching pennies game). On the

other hand, in Cheng et al. (2004) it is shown that binary games admit pure strategy Nash

equilibria as long as agents’ payoff functions are symmetric. We extend and generalize

such a result showing the existence of pure strategy Nash equilibria in a less restrictive

setting, defining a class of monotone binary games (see Definition 3.1).

• From a financial economic perspective, we build a model where the returns R of the risky

asset are function of both today’s (known) and tomorrow’s (unknown) aggregate demand.

On the other hand, the aggregate demand q depends on R. The dynamics for the aggregate

demand and returns are, thus, coupled. We also study the impact of transaction costs on

the equilibria characteristics and the efficiency of the market.

The paper is organized as follows. The market model and the structure of the one period

game played by the N agents are described in Section 2. In Section 3 we solve the static

non-cooperative game and we derive the implicit evolution equation (1). Section 4 contains a

detailed discussion of fixed points for (1), the proof of the existence of cycles of period 2 and the

study of the stability both of the fixed points and of the 2-cycles. We also provide results on

the volume of trades at the equilibrium. In Section 5 we propose some examples and perform

comparative static exercises on them. Concluding remarks and the bibliography follow.

4



2 The model

In this chapter we describe both the market structure and the rules of the non-cooperative game

played by the agents, starting with the former.

2.1 The market structure

We consider N agents acting on a market for a risky asset open at discrete dates {tk}k>0. At

each trading date the agents have to choose whether to trade or not one share of the asset.

We denote by ωi(tk) ∈ {0, 1}, for i = 1, . . . , N , the choice of the i-th agent at time tk. In this

context, ωi(tk) = 1 means that at time tk agent i does own the share, ωi(tk) = 0 means that

agent i does not.

For each trading date tk, the agents are facing a static non-cooperative game subject to

their information at time tk−1. Let us denote tk−1 = t̃ and tk = t. We assume that all the

agents know the past price of the share, denoted by P̃ = P (t̃), but they can only forecast the

price P = P (t) prevailing at the end of the trading day on the market. They, clearly, know

their own choice at time t̃, denoted by ω̃ =: ω(t̃), and the aggregate number of shares owned by

the participants at time t̃, denoted by Q̃ =
∑N

j=1 ω̃j. When deciding their action, agents take

into account the unknown return R of the asset that arises at the end of the trading period.

This implies that agents are myopic, in the sense that they only look at one period returns,

neglecting future {tk+1, tk+2, ...} values. In other words, it is as if agents are assumed to hold a

specific version of variable rate of time preferences6, namely, they exhibit extreme impatience,

in the sense that they dislike so much future values that attach to them an infinitesimal weight

in their utility function, which can be neglected. This implies that the game, being a sequence

of static, repeated interactions, cannot be solved by means of backward induction. Such an

approach, assuming agents that are not perfectly rational in a game theoretic sense, i.e., perfectly

foresighted expected utility maximizers, is coherent with our framework of boundedly rational

players.

As already said, a peculiarity of this model is that R is a function of Q =
∑N

j=1 ωj(t), the number

of shares owned by participants as resulting from the game at time t. We normalize quantities,

6On the implausibility of the standard constant discount rate of time preferences assumption and consequences

for time-consistency of the choices, see, for instance, Thaler (1981) and Loewenstein and Prelec (1992).
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defining q = 1
N

∑N
j=1 ωj and assuming that

R = g (q̃, q) , (2)

where g : [0, 1] × [0, 1] → R is a continuous map, increasing in q and decreasing in q̃. In

particular, this specification reflects the stylized fact that prices are positively influenced by an

increasing demand7. Equation (2) is extremely stylized. It does not take into account exogenous

supply-side factors, which could be introduced through an exogenous random shock ξ influenc-

ing returns, so that R = g(q̃, q) + ξ. Coherently with the scope of the paper we focus on the

relationship between returns and demand and thus leave such an extension to further researches.

We adopt the following important assumptions about market design.

A.1 All the transactions are closed with a Market Maker (MM), who guarantees that all the

buy/sell orders are fulfilled. As a consequence, we are assuming an infinite supply. Such an

assumption is justified by our intent to focus on the relationship between individual behav-

ior and collective one, i.e., market demand, leaving aside exogenous quantity constraints

to market supply which would affect the asset’s price. As said, we propose a different

framework compared, for instance, to the search-and-matching one. In that context it

is assumed that supply is fixed, the result of market interaction is the amount of trades

that occurs and prices derive from it8. We follow the opposite rationale, namely, supply is

infinite, the output of the model are prices and trade volumes follow. Thus, our stylized

model can be useful to explain asset dynamics in all those markets, where liquidity is large

enough (or individuals are so infinitesimal with respect to the market), so that aggregate

demand is the driving force of the market. Notice, moreover, that we are considering a

market with N participants, where each agent may hold at most one asset. This means

that the infinite supply assumption can be relaxed in assuming that there are N shares of

the risky asset offered to the market by an offering entity (a firm, a sovereign or a private

investment bank). The shares not bought in the first round remain to the offering entity,

that consequently acts as a market maker for this good in the next periods.

A.2 On the market there are frictions, in particular proportional transaction costs. The market

maker offers a [bid, ask] spread such that P̃b ≤ P̃ ≤ P̃a, where we denote by P̃b the price at

7As in Föllmer et al. (1994), for instance.
8See Rocheteau and Weill (2011).
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which the share is sold on the market, and by P̃a the price at which the share is bought on

it. In our simplified market, where only one share of the asset can be traded, a proportional

transaction cost results in a constant proportion µ ≥ 0 subtracted to the realized return

of trading. In particular we can define the effective return Reff made on trade as

Reff = R − µ , when buying from the MM ;

Reff = −µ , when selling to the MM ;

Reff = R , when keeping the asset.

2.2 The one period non-cooperative game

Let us focus now on the one period non-cooperative game. At any trading date, each agent

has to decide whether to trade or not. Given their information, the N agents simultaneously

choose their actions, according to their utility function. Following the random utility models

approach9, we assume that the utility has two components. The first (the rational part) is based

on the forecasted profit, the second is an error term representing the bounded rationality of the

agents: they may fail in choosing correctly their action. We define, for i = 1, . . . , N ,

Ui(ωi) = f(Reff) + ǫi ωi, (3)

where f : R → R is a continuous, strictly increasing map such that f(0) = 0 and it represents the

agents’ risk attitude. The terms (ǫi)i=1,...,N are i.i.d. random variables with common distribution

η.

It is easy to see that, in our setting, the choice is made according to the scheme described

in Table 1.

ω̃ → ω event Ui

0 → 1 if f(R − µ) + ǫi > 0 f(R − µ) + ǫi

0 → 0 if f(R − µ) + ǫi ≤ 0 0

1 → 1 if f(R) + ǫi > f(−µ) f(R) + ǫi

1 → 0 if f(R) + ǫi ≤ f(−µ) f(−µ)

Table 1: Scheme of the four possible scenarios (actions) and related payoffs.

9See Brock and Durlauf (2001) for a detailed discussion on Random Utility Models.
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It follows that the utility function Ui for each agent can be written as

Ui(ωi) = ωi(1 − ω̃i)f(R − µ) + ωiω̃if(R) + ω̃i(1 − ωi)f(−µ) + ǫi ωi

= ωi [(1 − ω̃i)f(R − µ) + ω̃if(R) − ω̃if(−µ) + ǫi] + ω̃if(−µ) .
(4)

Since, by equation (2), R = g(q̃, q), utility Ui explicitly depends on the N−dimensional vector

ω. Therefore, with a slight abuse of notations, we often write Ui(ωi, ω−i), where ω−i denotes

the vector of actions ω deprived of ωi. Note that the dependence in ω−i is only through

the normalized aggregate demand qN = 1
N

∑

i ωi. Therefore, our N dimensional game can be

considered as a finite dimensional version of a mean field game in the sense of Lasry and Lions10.

In fact, we have a non-cooperative game with a very large number of similar agents, each of

them subject to some noise, ǫi, and coupled with each other through their utility function, which

depends on an aggregate quantity, qN , of the state variables.

3 Solution to the static non-cooperative game

In this section we turn our attention to the solution of the static non-cooperative game: we

study existence and characterization of Nash equilibria. In particular, we first show existence

of a pure strategy Nash equilibrium in the game played by the N agents. Then we describe the

expected behavior of the population when the number of players goes to infinity. This leads to

a characterization of the steady states of a sequence of repeated static games.

We look for an action ω = (ω1, . . . , ωN ) = (ωi, ω−i) such that

Ui(ωi, ω−i) ≤ Ui(ω̂i, ω−i) , i = 1, . . . , N, (5)

where ω̂i = 1 − ωi denotes a switch in agent i’s action.

We, firstly, prove existence of pure strategy Nash equilibria in a rather general class of N -

player non-cooperative games that encompasses the problem we are facing. To this aim we

define the class of binary monotone mean field games as follows.

Definition 3.1 (Binary monotone mean field game). A N player non-cooperative game is called

binary monotone mean field when:

• the N players face binary actions: ωi ∈ Ω = {0; 1}, for i = 1 . . . , N ;

10See Lasry and Lions (2007) and Cardaliaguet (2010).
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• their payoffs are of the kind

Ui(ω1, . . . , ωN ) = ωi



G
(1)
i





N
∑

j=1

ωj



+ ξi



+ G
(2)
i (ω−i), (6)

where G
(1)
i is monotone, for i = 1 . . . , N .

In the next lemma, we prove the existence of pure strategy Nash equilibria for binary mono-

tone mean field games. As already said, the game is mean field in the sense that the payoff

depends on ω only through an aggregate variable. The monotonicity is related to the functions

G
(1)
i (·). This result extends and generalizes previous works on existence of pure strategy Nash

equilibria in the context of binary decisions (see, for instance, Cheng et al. (2004)) to games

that are not necessarily symmetric.

Lemma 3.2. A binary monotone mean field game as defined in Definition 3.1 admits pure

strategy Nash equilibria.

Proof. We give the proof for the increasing case. The proof for the decreasing one follows

the same lines.

For ω = (ω1, . . . , ωN ) ∈ {0, 1}N , set A(ω) := {i : ωi = 1}. Thus vectors of strategies can be

identified with subsets of {1, 2, . . . , N}. Note that the following statements are equivalent:

N1. ω is a Nash equilibrium;

N2. Setting A := A(ω),

1. for every i ∈ A, we have G
(1)
i (|A|) + ξi ≥ 0;

2. for every i 6∈ A, we have G
(1)
i (|A| + 1) + ξi ≤ 0.

Thus, all we need is to find A ⊆ {1, 2, . . . , N} for which N2 holds. For A ⊆ {1, 2, . . . , N}, define

the transformation

T A := {i ∈ A : ξi ≥ −G
(1)
i (|A|)}.

Now set A0 := {1, 2, . . . , N}. If T A0 = A0, then N2 holds for A0, in other words (1, 1, . . . , 1) is

a Nash equilibrium. Otherwise, set A1 := T A0 ( A0. Note that, if i 6∈ A1, then

ξi < −G
(1)
i (|A0|) ≤ −G

(1)
i (|A1| + 1).
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So, if T A1 = A1, then N2 holds for A1. Otherwise we iterate. By induction on k we show that,

whenever Ak := T Ak−1 ( Ak−1,

i 6∈ Ak ⇒ ξi ≤ −G
(1)
i (|Ak| + 1).

We have shown it for k = 1. Suppose it is true for k − 1. If i ∈ Ak−1 \ Ak, by definition of T we

have that

ξi < −G
(1)
i (|Ak−1|) ≤ −G

(1)
i (|Ak| + 1).

On the other hand, if i 6∈ Ak−1, then, by the inductive assumption,

ξi ≤ −G
(1)
i (|Ak−1| + 1) ≤ −G

(1)
i (|Ak| + 1).

Now, as soon as we have T Ak = Ak, then N2 holds for Ak. But, since T maps a finite set to a

subset of itself, it must eventually reach a fixed point, which is possibly the empty set.

In the following theorem we apply the existence result shown in Lemma 3.2 to the market

setting defined in the previous section:

Theorem 3.3. There exists a pure strategy Nash equilibrium ω
∗ for the non-cooperative game

played at time t by the N agents with utilities as in equation (4). Moreover, ω
∗ is such that

ω∗
i = H

(

(1 − ω̃i)f

(

g

(

q̃N , q∗
N +

1 − ω∗
i

N

)

− µ

)

+ ω̃if

(

g

(

q̃N , q∗
N +

1 − ω∗
i

N

))

− ω̃if(−µ) + ǫi

)

,

(7)

where H(u) = I[0,+∞)(u) and where q̃N = 1
N

∑N
i=1 ω̃i and q∗

N = 1
N

∑N
i=1 ω∗

i .

Proof. Existence follows directly from Lemma 3.2. It is enough to put























G
(1)
i (x) = (1 − ω̃i)f(g(q̃, x/N) − µ) + ω̃f(g(q̃, x/N))

G
(2)
i (y) = ω̃if(−µ)

ξi = −ω̃if(−µ) + ǫi

We are left to show that any pure strategy Nash equilibrium satisfies equation (7).

First of all, notice that the term ω̃if(−µ) in equation (4) does not play any role in the maxi-

mization, so that we can ignore it. Fix now a pure strategy ω
∗; suppose, firstly, that ω∗

i = 0.

This means that Ui(0, ω
∗
−i) ≥ Ui(1, ω

∗
−i). Ui(0, ω

∗
−i) = 0, whereas it is not difficult to see that

Ui(1, ω
∗
−i) = (1 − ω̃i)f

(

g

(

q̃N , q∗
N +

1

N

)

− µ

)

+ ω̃if

(

g

(

q̃N , q∗
N +

1

N

))

+ ǫi.
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Thus ω∗
i = 0 implies (1 − ω̃i)f

(

g
(

q̃N , q∗
N + 1

N

)

− µ
)

+ ω̃if
(

g
(

q̃N , q∗
N + 1

N

))

+ ǫi ≤ 0.

Consider now ω∗
i = 1. We have Ui(1, ω

∗
−i) ≥ Ui(0, ω

∗
−i). Note that in this case

Ui(1, ω
∗
−i) = (1 − ω̃i)f (g (q̃N , q∗

N ) − µ) + ω̃if (g (q̃N , q∗
N )) + ǫi ≥ 0.

Summarizing, ω∗
i is characterized by equation (7).

Equation (7) characterizes the pure strategies of the game. In order to study the evolution of

returns in the market, an important statistics is q∗
N , the optimal proportion of agents choosing

ω = 1 in the game with N players. Equation (7) can be rewritten in terms of q∗
N via the so called

auto consistency equation, obtained summing over i and dividing by N both terms in equation

(7). We also allow the return RN to depend on the number of agents: these dependencies are

functional to the N → +∞ limit that will be taken later.






















q∗
N = 1

N

∑N
i=1 H

(

f
(

g
(

q̃N , q∗
N +

1−ω∗

i

N

)

− µ
)

−ω̃i

(

f
(

g
(

q̃N , q∗
N +

1−ω∗

i

N

)

− µ
)

− f
(

g
(

q̃N , q∗
N +

1−ω∗

i

N

))

+ f(−µ)
)

+ ǫi

)

.

RN = g(q̃N , q∗
N )

(8)

Note that Theorem 3.3 guarantees that, for q̃N given, at least one solution (q∗
N , RN ) to (8)

exists. On the other hand uniqueness may fail; in other words, the dynamical system described

by (8) can be ill defined. Nevertheless, one can, at a heuristic level, consider the limit of (8)

as N → +∞, at least along convergent subsequences. We now prove the main theorem of this

paper.

Theorem 3.4. Assume that

lim
N→+∞

q̃N = q̃,

and, for each N , let qN be a solution of equation (8). Then (qN )N≥1 is a tight sequence of

random variables. Each weak limit point q is, with probability one, solution of the limiting

equation

q = q̃η (f(g(q̃, q)) − f(−µ)) + (1 − q̃)η (f(g(q̃, q) − µ)) . (9)

Proof. For simplicity of notations, we set f = id; no change is needed in the proof for the general

case.

To begin with, tightness of (qN ) is obvious, since qN is [0, 1]-valued. We still denote by (qN ) a

subsequence converging to q. By no loss of generality, possibly enlarging the probability space
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where the ǫi’s are defined (see the Skorohod Representation Theorem in Billingsley (1999),

Theorem 1.6.7), we can assume qN → q almost surely. Now, let ρN be the empirical measure

ρN :=
1

N

N
∑

i=1

δ(ω̃i,ǫi).

Its weak limit comes from the assumptions: for h bounded and continuous,

lim
N→+∞

1

N

N
∑

i=1

h(ω̃i, ǫi) = q̃

∫

h(1, ǫ)η(dǫ) + (1 − q̃)

∫

h(0, ǫ)η(dǫ) (10)

almost surely.

Now, let Hδ, with δ > 0, be a family of Lipschitz functions with infδ Hδ = H. For δ fixed,

by (8), (10) and the fact that

g

(

q̃N , qN +
1 − ωi

N

)

→ g(q̃, q)

almost surely, we have

q = lim
N→+∞

1

N

N
∑

i=1

H

(

g

(

q̃N , qN +
1 − ωi

N

)

+ µ(2ω̃i − 1) + ǫi

)

≤ lim sup
N→+∞

1

N

N
∑

i=1

Hδ

(

g

(

q̃N , qN +
1 − ωi

N

)

+ µ(2ω̃i − 1) + ǫi

)

= q̃

∫

Hδ(g(q̃, q) + µ + ǫ)η(dǫ) + (1 − q̃)

∫

Hδ(g(q̃, q) − µ + ǫ)η(dǫ).

Taking the limit over a sequence δn ↓ 0, by Dominated Convergence we obtain

q ≤ q̃

∫

H(g(q̃, q) + µ + ǫ)η(dǫ) + (1 − q̃)

∫

H(g(q̃, q) − µ + ǫ)η(dǫ)

= q̃η (g(q̃, q) + µ) + (1 − q̃)η (g(q̃, q) − µ) .

The corresponding lower bound is obtained similarly: one takes a Lipschitz lower bound Hδ for

H, such that Hδ ↑ H− as δ ↓ 0, where H− differs from H only for H−(0) = 0 < H(0) = 1. We

obtain

q ≥ q̃

∫

H−(g(q̃, q) + µ + ǫ)η(dǫ) + (1 − q̃)

∫

H−(g(q̃, q) − µ + ǫ)η(dǫ).

Since, by assumption, η is a continuous distribution, we can replace H− with H in this last

formula, and the conclusion follows.

Whenever the limit equation (9), for a given q̃, has a unique solution q, Theorem 3.4 gives

a law of large numbers with a deterministic limit. For most examples, multiplicity of solutions

is actually exceptional, occurring only for few values of q̃.
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Remark 3.5. The static game has been solved for given ǫ1, ǫ2, . . . , ǫN , as a game with total

information. One could argue that a more realistic model is obtained assuming that each player

i can only observe its own noise ǫi, while only the distribution of the other players’ noise is

known to him. In rigorous terms this means:

• strategies are measurable functions from the noise space R to {0, 1}: in other words

ωi = ωi(ǫi);

• the utility of the ith player, which is of the form Ui(ωi, ω−i, ǫi), has to be replaced by

Ui := Eǫ−i
Ui(ωi, ω−i, ǫi),

where Eǫ−i
denotes average with respect to the noise variables ǫj , j 6= i.

The equation for the (pure) Nash equilibrium becomes

ωi = H

(

(1 − ω̃i)Eǫ−i

[

f

(

g

(

q̃N , qN +
1 − ωi

N

)

− µ

)]

+ ω̃iEǫ−i

[

f

(

g

(

q̃N , qN +
1 − ωi

N

))]

− ω̃if(−µ) + ǫi

)

. (11)

The existence of a Nash equilibrium now becomes more problematic, since strategies belong to a

larger space. However, ignoring this problem, and assuming further that a law of large numbers

holds, i.e., qN converge to a constant, in the limit as N → +∞, the qN obtained from (11)

converge to a solution of (9), as for the total information case. In other words, we expect that

the total and the partial information model yield the same macroscopic behavior.

4 Long time behavior of the limit evolution equation

Equation (9) describes the behavior of the system with utility function (4) in the infinite volume

limit. We are interested in detecting the t-stationary solution(s) of this equation and studying

its (their) stability properties. We refer to (9) as the limit evolution equation of our system.

Notice that at some points it will be more convenient to rewrite the system (9) as the implicit

equation G(q̃, q) = 0, where

G(q̃, q) := q − q̃η(f(g(q̃, q)) − f(−µ)) − (1 − q̃)η(f(g(q̃, q) − µ)) . (12)
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Non linear equations of the type of (9) have already appeared in literature; they have been

analyzed, for instance, in the context of heterogeneous agent based models (see Brock and

Hommes (1998) or Hommes (2006) for a survey). A recent application of agent based models to

a stylized financial market can be found in Chang (2007). In those papers, non linearity emerges

as a consequence of ex ante assumptions on agents’ heterogeneities or non linear price dynamics.

What makes our approach different is the derivation of (9) as a limit of a N -player game, where

agents are not heterogeneous in their expectations and where pricing rules are not forced to be

non linear.

The main results of this section are Theorem 4.3 and Theorem 4.4, in which we show,

respectively, existence and local (linear) stability of attractors for the limit evolution equation.

In Theorem 4.3 we consider two specific kinds of attractors for the dynamics induced by (12):

fixed points q such that G(q, q) = 0 and cycles of period 2 (briefly called 2-cycles). We define a

2-cycle as a pair (q̃, q) ∈ (0, 1)2, q 6= q̃ such that G(q̃, q) = G(q, q̃).

Before stating the main theorems, we give some basic assumptions needed for the analysis of

the model:

Assumption 4.1. The model we are considering is such that

A.1 g : [0, 1] × [0, 1] → R, g : (x, y) 7→ r, introduced in (2), is of class C1,1, decreasing in x and

increasing in y and such that g(x, x) ≡ 0.

A.2 There exists a C1 map

i : Im(g) → Im(g),

where Im(g) is the image of g(·, ·), which is strictly decreasing, and

g(y, x) = i(g(x, y))

for all x, y ∈ (0, 1).

A.3 The distribution function η of random terms, as introduced in (3), is absolutely continuous,

with continuous strictly positive and symmetric density.

Assumption A.1 states that returns are increasing in demand. Concerning Assumption

A.2, the map i(·) describes the way the returns are transformed for time reversal and depends

on the specific models; some examples are presented in Section 5. Decreasingness guarantees
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consistency with Assumption A.1. Finally, A.3 is a technical assumption and could be possibly

relaxed. We firstly prove a technical lemma:

Lemma 4.2. Define

A(R) := η(f(R) − f(−µ)) − η(f(R − µ)) and B(R) := η(f(R − µ)).

Under Assumption 4.1, the map τ defined as

τ(R) :=
A(R)B(i(R)) + B(R)

1 − A(i(R))A(R)
, (13)

is well defined and Im(τ) ∈ (0, 1).

Proof. Since η has, by assumption, a strictly positive derivative, η(x) < 1 for every x ∈ R.

In particular 0 < B(R) < 1, |A(R)| < 1, A(R)+B(R) = η(f(R)−f(−µ)) ∈ (0, 1). In particular,

A(i(R))A(R) < 1, so that τ is well defined. We now show that τ(R) ∈ (0, 1).

• τ(R) > 0 amounts to A(R)B(i(R)) + B(R) > 0. This is clearly true whenever A(R) ≥ 0.

If A(R) < 0, then

A(R)B(i(R)) + B(R) > A(R) + B(R) > 0.

• τ(R) < 1 amounts to

A(R)[A(i(R)) + B(i(R))] + B(R) < 1.

This is clearly true when A(R) ≤ 0. If A(R) > 0, then

A(R)[A(i(R)) + B(i(R))] + B(R) < A(R) + B(R) < 1.

Next theorem shows that fixed point and 2-cycle can be described in terms of returns as fixed

points of a suitable map.

Theorem 4.3. Define the map

φ(R) := g(τ(i(R)), τ(R)), (14)

where τ(·) and i(·) are as in Lemma 4.2. Then, under Assumption 4.1, the set of fixed points

and 2-cycles for (12) is characterized as the set of fixed points of the map φ. In particular,

i) q ∈ (0, 1) is a fixed point for G if and only if q = 1
2 . Moreover φ(R)|R=0 = 0.
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ii) G admits a 2-cycle if and only if the map φ has a nonzero fixed point.

Proof. A fixed point for (9) is such that

q = qA(R) + B(R)

R = g(q, q).

By assumption g(q, q) = 0, so that R = 0 and q = B(0)
1−A(0) = 1

2 . Note, moreover, that i(0) = 0

and τ(0) = 1
2 , so that φ(0) = 0. This proves that q = 1

2 is the only fixed point for (9) and, since

R = 0, it also corresponds to the zero value fixed point for the map φ.

We are now left with point (ii). To this aim, note that the system (9) has a 2-cycle when there

exists a pair (q̃, q) ∈ (0, 1)2, with q̃ 6= q, such that

q = q̃A(R) + B(R)

R = g(q̃, q) (15)

and

q̃ = qA(R̃) + B(R̃)

R̃ = g(q, q̃) (16)

both hold. Suppose (15) and (16) hold. Note that R̃ = i(R). Plugging in (15) the expression

for q̃ in (16), we get q = τ(R) and q̃ = τ(i(R)). This, inserted in the second equation of (15),

gives R = φ(R).

Conversely, if R 6= 0 is such that R = φ(R), then q = τ(R) and q̃ = τ(i(R)) solve (15) and (16).

This concludes the proof of point (ii).

Theorem 4.3 shows that the only steady state equilibrium corresponds to half of the agents

owning the asset at each point in time. Moreover, it provides conditions for the existence of a

2-cycle. Even if Theorem 4.3 does not rule out more complex attractors such as longer periodic

orbits or chaotic behaviors, however, all these situations have not been detected in simulations

corresponding to the examples given in Section 5.

In the next result we discuss the local (linear) stability of the fixed point and of the 2-cycle.

Theorem 4.4. Let R∗ be any fixed point (possibly R∗ = 0) of φ, R̃∗ := i(R∗) and (q̃∗, q∗) :=

(τ(i(R∗)), τ(R∗)) the associated 2-cycle, possibly the fixed point
(

1
2 , 1

2

)

. Then, under Assumption

4.1, the following statements hold true.
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1. Well definiteness. Assume

q̃∗A′(R∗)∂2g(q̃∗, q∗) + B′(R∗)∂2g(q̃∗, q∗) 6= 1 (17)

and

q∗A′(i(R∗))∂2g(q∗, q̃∗) + B′(i(R∗))∂2g(q∗, q̃∗) 6= 1. (18)

The implicit map (9) is well defined both in a neighborhood of (q̃∗, q∗) and of (q∗, q̃∗).

2. Local stability. Set

ρ :=

∣

∣

∣

∣

A(R∗) + q̃∗A′(R∗)∂1g(q̃∗, q∗) + B′(R∗)∂1g(q̃∗, q∗)

1 − q̃∗A′(R∗)∂2g(q̃∗, q∗) − B′(R∗)∂2g(q̃∗, q∗)

∣

∣

∣

∣

×

∣

∣

∣

∣

A(i(R∗)) + q̃∗A′(i(R∗))∂1g(q∗, q̃∗) + B′(i(R∗))∂1g(q∗, q̃∗)

1 − q̃∗A′(i(R∗))∂2g(q∗, q̃∗) − B′(i(R∗))∂2g(q∗, q̃∗)

∣

∣

∣

∣

. (19)

Then the 2-cycle (q̃∗, q∗) is linearly stable for ρ < 1, and linearly unstable for ρ > 1.

Proof. We only give a sketch of this rather straightforward proof. Note that we are consid-

ering the fixed point
(

1
2 , 1

2

)

as a particular case of (degenerate) 2-cycle.

Statement 1. follows from a standard application of the Implicit Function Theorem to the im-

plicit function (9). Concerning the stability, we apply twice the map (9) to a small perturbation

of q̃∗:

qε := (q̃∗ + ε)A(g(q̃∗ + ε, qε) + B(g(q̃∗ + ε, qε)

q̃ε := qεA(g(qε, q̃ε)) + B(g(qε, q̃ε)).

We then compute, by implicit differentiation, q′ := d
dε

qε|ε=0 first, and q̃′ := d
dε

q̃ε|ε=0 then. We

obtain |q̃′| = ρ, from which our statement of linear stability follows.

All conditions given in Theorem 4.4 simplify for the fixed point
(

1
2 , 1

2

)

, since equations (17)

and (18) coincide as well as the two factors in the right hand side of (19).

The rather awkward stability condition we have obtained, can in principle be checked nu-

merically in specific examples. We perform such an analysis for specific examples in the next

section. However, before moving forward, let us point out that a simpler geometrical condition

for the stability of the 2-cycle, when µ = 0 (i.e., no transaction costs), is shown in the next

result.

Corollary 4.5. Assume there are no transaction costs. Then, under Assumption 4.1,
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1. the fixed point is linearly stable if and only if φ′(0) < 1,

2. a 2-cycle (q̃∗, q∗) := (τ(i(R∗)), τ(R∗)) is linearly stable if φ′(R∗) < 1.

Proof. Note that, when µ = 0, we have A(R) ≡ 0. So, by Theorem 4.4, we get

ρ =

∣

∣

∣

∣

B′(R∗)∂1g(q̃∗, q∗)

1 − B′(R∗)∂2g(q̃∗, q∗)

∣

∣

∣

∣

∣

∣

∣

∣

B′(i(R∗))∂1g(q∗, q̃∗)

1 − B′(i(R∗))∂2g(q∗, q̃∗)

∣

∣

∣

∣

.

Moreover,

φ(R) = g(B(i(R)), B(R)),

so that

φ′(R) = ∂1g(B(i(R)), B(R))B′(i(R))i′(R) + ∂2g(B(i(R)), B(R))B′(R).

In what follows we use the fact that, since g(x, y) = i(g(y, x)), we have

∂1g(x, y) = i′(g(y, x))∂2g(y, x) , ∂2g(x, y) = i′(g(y, x))∂1g(y, x). (20)

Assume that φ′(R∗) < 1, i.e.,

∂1g(q̃∗, q∗)B′(i(R∗))i′(R∗) + ∂2g(q̃∗, q∗)B′(R∗) < 1. (21)

Note that, by (20), we can rewrite (21) in the alternative form

∂2g(q∗, q̃∗)B′(i(R∗)) + ∂1g(q∗, q̃∗)i′(i(R∗))B′(R∗) < 1. (22)

Note that, since B(R) = η(f(R)), we have B′ > 0. Moreover ∂1g < 0, ∂2g > 0, and i′ < 0.

Finally i′(i(R∗)) = (i−1)′(i(R∗)) = 1
i′(R∗) . By (21) we obtain

1 − ∂2g(q̃∗, q∗)B′(R∗) > ∂1g(q̃∗, q∗)B′(i(R∗))
1

i′(R∗)
> 0

or, equivalently,
∣

∣

∣

∣

∂1g(q̃∗, q∗)B′(i(R∗))

i′(R∗)[1 − ∂2g(q̃∗, q∗)B′(R∗)]

∣

∣

∣

∣

< 1. (23)

Similarly, by (22),

1 − ∂2g(q∗, q̃∗)B′(i(R∗)) > ∂1g(q∗, q̃∗)i′(R∗)B′(R∗) > 0

or, equivalently,
∣

∣

∣

∣

∂1g(q∗, q̃∗)i′(R∗)B′(R∗)

1 − ∂2g(q∗, q̃∗)B′(i(R∗))

∣

∣

∣

∣

< 1. (24)
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By multiplying (23) and (24) we get the stability condition ρ < 1.

In the next section we characterize the volume of trades, i.e., the number of shares exchanged

on the market at any trading date. We see that, even at the equilibrium, where q = 1
2 , some

trade may still be in place. The volume of trades depends on the parameters of the model.

4.1 Volume of trades

The total volume percentage of trades in the market with N players is given by the sum of the

trades of players who do not hold the asset and want to acquire it and those who own it and

want to sell it:

SN =
1

N

N
∑

i=1

ωi(1 − ω̃i) +
1

N

N
∑

i=1

ω̃i(1 − ωi)

=
1

N

N
∑

i=1

ωi −
2

N

N
∑

i=1

ωiω̃i +
1

N

N
∑

i=1

ω̃i

= qN − 2sN + q̃N ,

(25)

where sN = 1
N

∑N
i=1 ωiω̃i.

Proposition 4.6. Assume that limN→+∞ ρ̃N = ρ̃. Then, limN→+∞ SN = S, where S is the

limiting trading volume percentage, in the game with infinite agents. Moreover, S solves the

following equation

S = q − 2s + q̃ , where s = q̃η(f(R) − f(−µ)) . (26)

Proof.

sN =
1

N

N
∑

i=1

ωiω̃i = ρ̄N (1, 1) , (27)

where ρ̄N (ω̃, ω) is the joint distribution of each couple (ω̃i, ωi). To find the N → +∞ limit of

equation (27), we, first, need to prove there exists limN→+∞ ρ̄N = ρ̄; but (ρ̄N ) is a sequence

on a compact set, then it admits limit points. So we can consider the limit on convergent

subsequences, and, if the dynamics are well defined, there exists only one limit point. Thus a

law of large numbers apply and, in particular, it yields

sN → s = ρ̄(1, 1) .
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Now

ρ̄(1, 1) = P(ω̃ = 1, ω = 1)

= P(ω̃ = 1, H((1 − ω̃)f(R − µ) + ω̃(f(R) − f(−µ)) + ǫ) = 1)

= P(ω̃ = 1) · P(H((1 − ω̃)f(R − µ) + ω̃(f(R) − f(−µ)) + ǫ) = 1|ω̃ = 1)

= q̃ · P(f(R) − f(−µ) + ǫ > 0) = q̃η(f(R) − f(−µ)) ,

where H(x) = I[0,+∞)(x).

Recall that, when q = q̃ = 1
2 , R = 0. In this case, S = S(µ) = 1− η(−f(−µ)) = η(f(−µ)), is

a decreasing function of µ. This confirms the intuition that a transaction tax lowers the volume

of trades. Moreover, S ∈
[

0, 1
2

]

, since S(0) = 1
2 and limµ→+∞ S(µ) = 0.

Note that S(0) = 1
2 means that, under no transaction costs, half of the agents are trading the

asset at the equilibrium, even though the returns are zero. The reason being that in average,

half of the population believes in a decreasing market and half believes in the opposite (due to

the idiosyncratic error terms ǫ). As long as µ increases, the cost makes the transaction unworthy

for a larger fraction of agents. In this sense, the transaction tax µ has a regularizing effect, since

it mitigates the volume of transactions driven by boudedly rational traders.

5 Examples and comparative statics

All results derived so far have been given in a rather general form. In this section we discuss

in details the meaning and implication of our results, constraining the analysis to examples, in

which we adopt specific functional forms for the utility function f , for the distribution η of the

error parameter introduced in (3) and for the relationship between asset’s demand and its return

given by the function g defined in (2).

5.1 Examples

Demands and returns.

From now on, we rely on a common definition of returns: R = P −P̃

P̃
.

Case 1. Linear evolution of prices. We consider linearity in the relationship between demand

changes and asset’s returns:

R = k · (q − q̃) , k > 0. (28)
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This implies the following price dynamics:

P − P̃ = P̃ · k (q − q̃). (29)

This specification is inspired by Bouchaud and Cont (2000) and Nadal et al. (2005). k ≥ 0

is sometimes referred as the market depth. It measures how deeply the price is related to the

excess demand on the market. In this very stylized context it can be considered as a simplified

form of elasticity of price in demand.

Case 2. Loglinear evolution of prices. Simple as it might be, a linear relationship between

demand and returns can hide some interesting behavior of the system. In order to test such a

working hypothesis we allow for a non linear relationship between q and R. A simple way to

introduce it is assuming that returns follow an exponential shape:

R =

(

q

q̃

)k

− 1 , k > 0, (30)

which yields a loglinear price dynamics:

ln P − ln P̃ = k · (ln q − ln q̃). (31)

Risk attitude.

We constraint the agents to be either risk neutral or risk-averse, two common features of portfolio

selection models.

Case A. Risk neutral agents; f is linear (e.g. the identity function). In this case agents’ utility

function becomes:

Ui(ω) = ωi [R + µ(2ω̃i − 1) + ǫi] − ω̃iµ . (32)

Case B. Risk averse agents; let f be a CARA utility function (f(x) = 1 − e−Ax). In this case

we have:

Ui(ω) = ωi

[

(1 − ω̃i)(1 − e−A (R−µ)) + ω̃i(1 − e−A R) − ω̃i(1 − eAµ) + ǫi

]

+ ω̃i(1 − eAµ) , (33)

where A > 0 is the Arrow Pratt coefficient of absolute risk aversion.

Distribution of errors.

We only consider logistically distributed error terms:

η(x) = P(ǫ ≤ x) =
1

1 + e−βx
, β > 0. (34)
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The choice of logistic error terms is a rather common choice in many models of evolving

social systems11. Note that the logistic distribution is absolutely continuous and symmetric, as

it is needed in Sections 3 and 4. The parameter β measures the impact of the random compo-

nent in the decision process. When β is high, the deterministic part plays a major role in the

maximization process; when β is close to zero, the error term dominates and the choice between

ω = 1 and ω = −1 approximates a coin tossing.

The general results on existence and (local) stability of fixed point and 2-cycle of Theorems

4.3 and 4.4 can be rewritten in terms of the parameters of the model, depending on the cases

described above, as follows.

Theorem 5.1.

Case 1A (linear price evolution; risk neutral agents)

There exists a critical value kc(β, µ) for k, where kc(β, µ) := 1
β

(

1 + eβµ
)

, such that:

• for k < kc(β, µ), q∗ = 1
2 is locally stable; moreover, there are no locally stable 2-cycles;

• for k > kc(β, µ) and k 6= 1
β

(

2 + eβµ + e−βµ
)

, q∗ = 1
2 is unstable; moreover, there exists a

unique 2-cycle (q̃, q), which is locally stable.

Case 2A (loglinear price evolution; risk neutral agents)

There exist two critical values kc
l (β, µ) ≤ kc

u(β, µ) for k, where kc
u(β, µ) := 1

2β

(

1 + eβµ
)

, such

that:

• for k < kc
l (β, µ), q∗ = 1

2 is locally stable; moreover, there are no locally stable 2-cycles;

• there exists a non-zero measure set H ∈ ( kc
l (β, µ); kc

u(β, µ) ) such that, for h ∈ H, the

locally stable fixed point q∗ = 1
2 and a locally stable 2-cycle coexist;

• for k > kc
u(β, µ) and k 6= 1

2β

(

2 + eβµ + e−βµ
)

, q∗ = 1
2 is unstable; moreover, there exists

a unique locally stable 2-cycle.

Case 1B (linear price evolution; risk averse agents)

There exists a critical value kc(β, µ, A) for k, where kc(β, µ, A) := 2
Aβ(eAµ+1)

(

1 + exp{β(eAµ − 1)}
)

,

such that:

11See, for instance, Brock and Durlauf (2001).
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• for k < kc(β, µ, A), q∗ = 1
2 is locally stable; moreover, there are no locally stable 2-cycles;

• for k > kc(β, µ, A) and k 6= 2
Aβ(eAµ+1)

(

exp{β(eAµ − 1)} + exp{−β(eAµ − 1)} + 2
)

,

q∗ = 1
2 is unstable; moreover, there exists a unique 2-cycle (q̃, q), which is locally stable.

Case 2B (loglinear price evolution; risk averse agents)

There exist two critical values kc
l (β, µ, A) ≤ kc

u(β, µ, A) for k,

where kc
u(β, µ, A) := 1

Aβ(eAµ+1)

(

1 + exp{β(eAµ − 1)}
)

, such that:

• for k < kc
l (β, µ, A), q∗ = 1

2 is locally stable; moreover, there are no locally stable 2-cycles;

• there exists a non-zero measure set H ∈ ( kc
l (β, µ, A); kc

u(β, µ, A) ) such that, for h ∈ H,

the locally stable fixed point q∗ = 1
2 and a locally stable 2-cycle coexist;

• for k > kc
u(β, µ, A) and k 6= 1

Aβ(eAµ+1)

(

exp{β(eAµ − 1)} + exp{−β(eAµ − 1)} + 2
)

,

q∗ = 1
2 is unstable; moreover, there exists a unique locally stable 2-cycle.

The lower thresholds kc
l (β, µ) and kc

l (β, µ, A) in cases 2A and 2B, cannot be determined explicitly.

Remark 5.2. We conjecture that the statement of this theorem can be strengthened. In partic-

ular, we believe that H = ( kc
l ; kc

u), meaning that coexistence happens for all values of k in the

interval. Up to now, we are only able to provide specific examples, where coexistence certainly

holds.

Proof.

We only concentrate on cases 1A and 2A. The corresponding risk bearing situations (1B and

2B) can be treated in a similar way.

Case 1A. The value kc(β, µ) = 1
β

(

1 + eβµ
)

is determined by computing ρ, as defined in

equation (19). To this aim, note that for g(x, y) = k(y − x) we have i(r) = −r (where i(·) has

been defined in Assumption 4.1). Concerning the fixed point
(

1
2 , 1

2

)

, after some manipulations,

one finds that

ρ|( 1

2
, 1

2) =

(

1 − 2η(−µ) − kη′(µ)

1 − kη′(µ)

)2

,

where ρ|( 1

2
, 1

2 ) denotes the value of ρ computed in (q̃∗, q∗) =
(

1
2 , 1

2

)

. The stability condition

follows solving ρ
(

1
2 , 1

2

)

< 1, and it is easy to show it holds true if and only if k < η(µ)
η′(µ) .

Substituting the logit expression for the distribution η, it yields

k <
1

β

(

1 + e−βµ
)

.
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Concerning the 2-cycle, on the other hand, let firstly assume µ = 0. A 2-cycle corresponds to

the non zero fixed point of the map φ, which, in case 1A, gives

φ(R) = k
B(R) − B(−R)

1 + A(R)
= 2kη(R) − 1. (35)

It is easy to see that φ is an increasing concave map, clearly φ(0) = 0. Then a 2-cycle exists if

and only if the equation φ(R) = R has a positive solution if and only if φ′(0) > 1. This, in turns,

implies that the graph of φ in R∗ 6= 0 (corresponding to the 2-cycle) intersects the identity with

slope less than 1, giving also the stability condition (see Corollary 4.5). Now, φ′(0) > 1, in this

case, reads 2kη′(0) > 1, i.e., k > 2
β

.

If µ 6= 0, the map φ can be written as

φ(R) = k
η(R + µ) + η(R − µ) − 1

η(R + µ) − η(R − µ) + 1
,

which is an increasing function, since

φ′(R) = 2k
η′(R + µ)(1 − η(R − µ)) + η(R + µ)η′(R − µ)

[η(R + µ) − η(R − µ) + 1]2
> 0.

Moreover, it is concave, since

φ′′(R) =
2k

[η(R + µ) − η(R − µ) + 1]3
·

· [η′′(R + µ)(1 − η(R − µ)) + η(R + µ)η′′(R − µ)][η(R + µ) − η(R − µ) + 1]

− 2[η′(R + µ)(1 − η(R − µ)) + η(R + µ)η′(R − µ)][η′(R + µ) − η′(R − µ)] < 0.

Then, as before, the 2-cycle exists if and only if φ′(0) > 1, which, in this case, gives k η(µ)
η′(µ) > 1,

i.e., with logit distribution, k > 1
β

(

1 + e−βµ
)

. Then the 2-cycle exists if and only if the fixed

point is unstable.

Concerning the condition k 6= 1
β

(

2 + eβµ + e−βµ
)

, it follows from condition 1. of Theorem 4.4,

just computing the l.h.s. of equations (17) and (18) (the two conditions coincide in the case of

linear returns).

Case 2A. The value kc
u(β, µ) = 1

2β

(

1 + eβµ
)

follows arguing similarly as before; in this

case, since g(x, y) =
( y

x

)k
− 1, we have i(r) = −r

1+r
. Thus in this case, it is not difficult to

see that ρ|( 1

2
, 1

2 ) =
(

1−2η(−µ)−2kη′(µ)
1−2kη′(µ)

)2
. Hence ρ

(

1
2 , 1

2

)

< 1 if and only if k < 1
2β

(

1 + e−βµ
)

.

This is enough to discuss the (local) stability of the fixed point. Concerning the condition

k 6= 1
2β

(

2 + eβµ + e−βµ
)

, it follows from condition 1. of Theorem 4.4 arguing as before.
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As far as the 2-cycle is concerned, we are not able to explicitly find the threshold kc
l (β, µ) for

k above, from which a stable 2-cycle starts to exist. Nevertheless, at least for µ = 0, we can

rely on Corollary 4.5 in order to provide a closed form expression for the threshold level for k.

Indeed, after some algebra, one finds that

φ′(R) = kβ ·





1 + e
βR

1+R

1 + e−βR





k

·







1
(1+R)2 · e

βR
1+R

1 + e
βR

1+R

+
eβR

1 + e−βR






. (36)

Recall that the threshold for k is determined by φ′(R) = 1. In order to discuss existence and

stability of the 2-cycle, we start from the case µ = 0 and we rely on numerical tools. Indeed,

plotting the function φ(R) for different values of the parameters, one sees that, for k > 0 but

small, the function φ(R) is such that φ′(0) < 1 and φ(R) < R for all R > 0. Thus, there are

no (locally) stable 2-cycles (see left panel of Figure 1 for an example). For k large enough, in

particular, for k > kc
u(β, 0), a locally stable 2-cycle exists, since φ′(0) > 0 and φ(R) < R for R

large enough. The last fact is obvious, because, for R → ∞, φ(R) has finite value (1 + eβ)k − 1.

Thus φ must cross the bisector in some positive R∗, where φ(R∗) < 1.

The last argument to be discussed is coexistence of attractors. We show, in particular, that there

are values of β, k and h such that φ′(0) < 1 and φ(R∗) < 1 for R∗ 6= 0. To this aim, it is sufficient

to show that, for specific values of the parameters, φ′(0) < 1, φ(R′) > R and φ(R′′) < R for

R′′ > R′ > 0. Let us take k = 3, β = 0.3 and µ = 0. We have φ′(0) = 0.9 < 1. Moreover,

φ(4) > 4 and φ(10) < 10. Thus, necessarily, k = 3 belongs to the set H ∈ ( kc
l (0.3, 0); kc

u(0.3, 0) ).

We plot φ(R) with k = 3, β = 0.3 and µ = 0 in the right panel of Figure 1. In this case R∗ = 9.35

is the point marked with (∗). Therefore, there can be situations in which kc
l (β, µ) < kc

u(β, µ)

and coexistence takes place. Note, finally, that, for certain values of the parameters, we can also

have kc
l (β, µ) = kc

u(β, µ).

All these arguments can be extended to the case µ > 0 by means of numerical tools.

We discuss the main implications of this corollary in more details. In particular, we concen-

trate on the coexistence of fixed point and 2-cycle.

Look, firstly, at the case of linear evolution of prices: g(x, y) = k(y − x) (cases 1A and 1B).

To ease the notations, we put µ = 0. Under these assumptions, it is not difficult to show that

φ(x) = g(1 − η(x), η(x)) = k[2η(x) − 1], which is concave, since φ′(x) = 2kη′(x) is decreasing
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Figure 1: Two plots of the function φ(R) under the case 2A. In the left panel the only fixed

point is R = 0. In the right panel we see a strictly positive fixed point of φ(R), where φ′(R) < 1

(marked with (∗)).

for x ≥ 0. The equation x = φ(x) admits positive solution if and only if φ′(0) > 1 if and only

if kη′(0) > 1
2 . In this case the 2-cycle is stable, since the graph of φ intersects the identity with

slope less than 1. As a result, there can be no coexistence of stable fixed point and stable 2-cycle.

On the other hand, under loglinear evolution of prices (i.e. in cases 2A and 2B), coexistence

is possible as shown in the right panel of Figure 1. Note that, looking at that figure, we also

have an unstable fixed point (denoted by (o) in the graph).

Coexistence has important consequences at the level of the finite dimensional system. We

perform some agent-based simulations in order to capture this aspect. More in details, we

simulate a large but finite population of N agents. At any time step, we let the N agents

play (sequentially) their best response to the (fixed) actions of the other agents. We continue

letting the algorithm work unless a fixed profile ω is reached. In doing this, we are numerically

identifying a Nash equilibrium as a strategy profile ω, that is a fixed point of the best response

map. In the case of multiple Nash equilibria, the algorithm always identifies the nearest to the

old equilibrium found in the previous time step (where the nearest means the one where less

agents have switched their choice).

In the case of coexistence, it can be shown that the finite dimensional system oscillates between

the two different attractors: it remains for rather long time windows near to the fixed point

and for rather long times near to the limiting 2-cycle. See Figure 2, where we use the same
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parameters as in the right panel of Figure 1. This situation, rephrased in terms of returns,

mimics a time series, where we have periods of relatively stable returns and periods with very

volatile returns. Therefore, we can say that in our simple model we are able to endogenously

generate market volatility regime switching.
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Figure 2: Asymptotic regime (2-cycle) for demand (dotted line) and finite dimensional simulation

with N = 1000 agents (continuous line).

5.2 Comparative statics

In this section we analyze how the picture of the stationary regime changes depending on the

parameters of the model. In fact, depending on the parameters k, β, µ, we discuss how vary

the domains of attractions towards the fixed point and the 2-cycle and the size of ∆q (and

consequently the jump of R), in the case of the limiting stable 2-cycle. For the sake of simplicity

we concentrate on the comparative statics only for the risk neutral cases 1A and 2A. In what

follows, we consider, without loss of generality, the case when q̃ < q, i.e., when ∆q > 0.

Domains of attractions

Concerning the linear case 1A, we analyze how the threshold kc(β, µ), which separates the

regions of local stability of the two attractors (fixed point and 2-cycle), varies as a function of the

transaction cost µ, first, and of the error parameter β, then. Recall that kc(β, µ) := 1
β

(

1 + eβµ
)

.

It is clear that kc is an increasing function of µ, kc ≥ 2
β

. Then, when µ increases, the region
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of local stability of the fixed point enlarges, meaning that the transaction cost stabilizes the

market. Concerning the dependence of kc on β, we prefer to distinguish the case µ = 0 from the

case µ 6= 0.

If µ = 0, kc = 2
β

, which is a decreasing function of β. What happens is that, when β → 0+, i.e.,

the error dominates, only the region of fixed point survives. This is due to the fact that, when

β → 0+, the agents are completely randomizing their choice. Hence, in the asymptotic market

with infinite agents, half of them chooses ω = 1 and half ω = 0. The demand is, therefore,

always equal to 1
2 . Note moreover that since also the vector of past actions ω̃ is completely

randomized, there will be half of the people owning the asset that are willing to sell it and

viceversa. This is the reason why, at the equilibrium with µ = 0, the volume of trade is S = 1
2

(see Proposition 4.6).

Conversely, when β → +∞, i.e., the error vanishes, it seems that only the region of the 2-cycle

survives; but, when µ = 0 the amplitude of the 2-cycle is given, as we prove later, by the implicit

equation

q − q̃ =: ∆q = 2η(k∆q) − 1

=
|eβk∆q − 1|

eβk∆q + 1
,

(37)

which gives solutions ∆q = 0 or ∆q > 0. ∆q = 0 is a trivial 2-cycle, that collapses in the fixed

point q = 1
2 ; instead ∆q > 0 is such that, when β → +∞, ∆q → 1. The two extreme degenerate

situations are explained by the fact that with zero costs and perfectly rational agents, either

nobody trades or everybody trades.

If µ 6= 0, when β → 0+ and when β → +∞, kc → +∞; moreover, there exists a value

β̄ ∈ (1.27µ, 1.28µ) such that, for β ≤ β̄, kc decreases , while, for β > β̄, kc increases. When

the error dominates or it vanishes, only the region of fixed point survives. The existence of a

positive taxation excludes the previous situation in which everyone is trading the share, again

confirming the stability property of transaction costs. However, in intermediate situations there

is a sort of balancing effect between β and µ. In particular, there are values of k for which the

market is highly volatile and values for which the market converges towards the fixed point. The

value β̄ denotes the value of β where kc reaches its minimum, i.e., the domain of attraction of

the 2-cycle is larger.

Concerning the loglinear case 2A, we have to discuss the values of kc
l (β, µ) and kc

u(β, µ).
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The shape of kc
u(β, µ) is very close to the kc(β, µ) discussed in the previous case. As already

mentioned in Theorem 5.1, existence of the two attractors is possible under the loglinear scenario.

Nevertheless, it appears to be quite hard to make comparative statics about kc
l (β, µ). Looking

at numerical simulations, it seems that the region of coexistence is large for very small values

of β, but it shrinks very fast increasing β. To show it, look at Table 2, where we collect some

values of kc
l (β, µ) and kc

u(β, µ) varying β, for µ = 0.

β kc
l (β, 0) kc

u(β, 0)

0.02 7.66 50

0.1 4.91 10

0.3 2.89 3.33

0.5 1.96 2

0.7 1.42 1.42

Table 2: How kc
l (β, µ) and kc

u(β, µ) vary with β. In this simulation it is µ = 0.

Size of ∆q

Case 1A. Before analyzing the variation in demand and in R in the region of the 2-cycle, we

have to find a relation, which describes the amplitude |∆q| of the 2-cycle. We can derive an

explicit solution for the equation linking ∆q with the parameters of the model only in case 1A.

In particular, to do it, let rewrite in this case (15) and (16):

q = q̃η(k∆q + µ) + (1 − q̃)η(k∆q − µ) (38)

and

q̃ = qη(−k∆q + µ) + (1 − q)η(−k∆q − µ) . (39)

Now, summing and subtracting (38) and (39), it yields

q + q̃ = 1 (40)

and

q − q̃ = ∆q =
η(k∆q + µ) + η(k∆q − µ) − 1

η(k∆q + µ) − η(k∆q − µ) + 1

=
e2βk∆q − 1

e2βk∆q + 2eβ(k∆q+µ) + 1
,

(41)
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Figure 3: Different solutions of equation (41) varying k (Panel A) and µ (Panel B), where h(∆q)

denotes the r.h.s. of (41). Note that ∆q increases with k and it decreases with µ.

where the last equality follows, after some manipulations, when we substitute the expression of

the logit distribution to η.

The fixed points of equation (41) characterize the attractors of our model. Note that ∆q = 0 is

always solution for (41) and it corresponds to the fixed point q = 1
2 . Moreover, since the r.h.s.

of equation (41) is increasing and concave in ∆q, there might be situations in which another

solution ∆̄q > 0 exists. It shows the size of the limiting 2-cycle. Figure 3 reports the shape of

equation (41), highlighting its fixed points. Note that, for low values of k and/or β, the solution

∆q = 0 is unique. If we increase k and/or β, we can see the positive solution ∆̄q, whose value

increases with k and/or β. Eventually, for k and/or β approaching infinity, ∆̄q approaches 1.

In particular, in Panel A of Figure 3 we plot the r.h.s. of (41) finding the (eventual) non zero

solution of (41) under increasing values of k. In Panel B we perform the same exercise varying

µ. It is interestingly enough Panel B of Figure 3 confirms that transaction costs regularize the

market in the sense that the jumps of demand (hence of returns) boil down with an increasing

taxation on trades. In order to explicit how the variation in demand at the equilibrium depends

on the parameters, we perform numerical simulations for both Cases 1A and 2A described in

Figure 4. In Panels A and B we plot the size of the 2-cycle in case 1A of linear returns. In

particular, in Panel A we keep k fixed and we let β change in the interval (0, 2]. Moreover, we

choose three different levels for µ: 0, 0.06 and 0.1. In Panel B we keep β fixed and we let k

change in the interval (0, 2] (same levels for µ as in Panel A). In Panels C and D we perform the

same analysis in case 2A. The graphs confirm the fact that the size of the 2-cycle decreases with

30



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

β

∆ 
q

Panel A

 

 

µ=0
µ=0.06
µ=0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k

∆ 
q

Panel B

 

 

µ=0
µ=0.06
µ=0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

β

∆ 
q

Panel C

 

 

µ=0
µ=0.06
µ=0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k

∆ 
q

Panel D

 

 

µ=0
µ=0.06
µ=0.1

Figure 4: Different levels of ∆̄q (i.e., the size of the 2-cycle at the equilibrium), varying the

parameters of the model in the linear case (Panel A and B) and loglinear case (Panel C and D).

Note that in Panels A and C, we keep k = 1 fixed and in Panels B and D we keep β = 1 fixed.

µ and increases with β and k. Note that, for small values of the parameters (β and k), the size

of the 2-cycle is zero, meaning that the dynamics for the demand are converging towards the

fixed point q = 1
2 . A second important remark is that the size of the 2-cycle does not depend

on the model we choose. Indeed, Panels A and C and Panels B and D are exactly equal. This

is an interesting result. The size of the 2-cycle does not depend on the specific model adopted,

even though the domains of attraction do (as shown in Theorem 5.1).

6 Concluding remarks.

We have built a simple model for a liquid market of a risky asset, where a large number of

similar interacting agents can trade a share of the asset. We have also taken transaction costs

into account.
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We have studied the dynamics of the demand function and the related returns emerging

by the trading mechanism. Compared to related literature, we have suggested a framework in

which a rather general form of dependence between aggregate demand for the asset and the

asset returns is in place. In particular, the dynamics of these two fundamental state variables

cannot be separately studied. The joint evolution of these quantities gives rise to interesting

stylized facts such as multiplicity of equilibria, non linear dynamics of returns, boom and crash

cycles, all facts that have been discussed in details.

Agents interactions have been modeled through a static (one period) non-cooperative game.

Agents face social interactions and bounded rationality, the latter introduced following a well

known strand of research: random utility models inspired by Brock and Durlauf (2001). From

this point of view, we have enriched this framework, letting the agents update their opinion

in a parallel way, i.e., their action is the consequence of a game whose payoffs depend on the

expectations on the behavior of the population.

We have detected the mitigating effects of transaction costs that may help in regularizing

the market. Moreover, we have observed that, for some values of the parameters, booms and

crashes can arise as the result of agents’ interplay and of market features.

Finally, notice that, owing to the assumption of agents’ simultaneous updating, at the equi-

librium the limiting dynamics converge either to a fixed point or to a 2-cycle. This is a novelty

in probabilistic models that describe social interactions and, in case, contagion; see, for instance,

Blume and Durlauf (2003) or Dai Pra et al. (2009) in which the stable attractors can be only

fixed points, and where agents update their actions sequentially.
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