673 research outputs found

    Optical study of sonic and supersonic jet penetration from a flat plate into a Mach 2 airstream

    Get PDF
    Optical study of sonic and supersonic jet penetration from flat plate into Mach 2 airstrea

    Burning rate control of solid propellants Patent

    Get PDF
    Pressurized gas injection for burning rate control of solid propellant

    Navier-Stokes analysis of transonic cascade flow

    Get PDF
    A new kind of C-type grid is proposed, this grid is non-periodic on the wake and allows minimum skewness for cascades with high turning and large camber. Reynolds-averaged Navier-Stokes equations are solved on this type of grid using a finite volume discretization and a full multigrid method which uses Runge-Kutta stepping as the driving scheme. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A detailed numerical study is proposed for a highly loaded transonic blade. A grid independence analysis is presented in terms of pressure distribution, exit flow angles, and loss coefficient. Comparison with experiments clearly demonstrates the capability of the proposed procedure

    Multigrid calculation of three-dimensional viscous cascade flows

    Get PDF
    A 3-D code for viscous cascade flow prediction was developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full multigrid method. The Baldwin-Lomax eddy viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency

    Seesaw

    Get PDF
    The twenty-three poems in this collection are invested in the examination of memories. The author\u27s personal experiences and observations from childhood, adolescence, and young adulthood are thoroughly explored using original images and inventive language. Influenced by the works of Cesar Vallejo, Kimiko Hahn, and Karen Volkman, among others, these poems describe scenes and relationships from the past in a surreal, non-linear manner. The result is a highly detailed and emotional account of people and places that have made a significant impact on the author\u27s life. Themes of resentment, guilt, loss, and regret provide a tangible link from poem to poem. A critical introduction explains the author\u27s stylistic preferences and literary influences. The poems range from one page to three pages in length, and are separated into three sections. Each of these sections represents a period of time in the author\u27s life

    Statistical Models of Reconstructed Phase Spaces for Signal Classification

    Get PDF
    This paper introduces a novel approach to the analysis and classification of time series signals using statistical models of reconstructed phase spaces. With sufficient dimension, such reconstructed phase spaces are, with probability one, guaranteed to be topologically equivalent to the state dynamics of the generating system, and, therefore, may contain information that is absent in analysis and classification methods rooted in linear assumptions. Parametric and nonparametric distributions are introduced as statistical representations over the multidimensional reconstructed phase space, with classification accomplished through methods such as Bayes maximum likelihood and artificial neural networks (ANNs). The technique is demonstrated on heart arrhythmia classification and speech recognition. This new approach is shown to be a viable and effective alternative to traditional signal classification approaches, particularly for signals with strong nonlinear characteristics

    Time-Domain Isolated Phoneme Classification Using Reconstructed Phase Spaces

    Get PDF
    This paper introduces a novel time-domain approach to modeling and classifying speech phoneme waveforms. The approach is based on statistical models of reconstructed phase spaces, which offer significant theoretical benefits as representations that are known to be topologically equivalent to the state dynamics of the underlying production system. The lag and dimension parameters of the reconstruction process for speech are examined in detail, comparing common estimation heuristics for these parameters with corresponding maximum likelihood recognition accuracy over the TIMIT data set. Overall accuracies are compared with a Mel-frequency cepstral baseline system across five different phonetic classes within TIMIT, and a composite classifier using both cepstral and phase space features is developed. Results indicate that although the accuracy of the phase space approach by itself is still currently below that of baseline cepstral methods, a combined approach is capable of increasing speaker independent phoneme accuracy

    Delayed self-recognition in children with autism spectrum disorder.

    Get PDF
    This study aimed to investigate temporally extended self-awareness (awareness of one’s place in and continued existence through time) in autism spectrum disorder (ASD), using the delayed self-recognition (DSR) paradigm (Povinelli et al., Child Development 67:1540–1554, 1996). Relative to age and verbal ability matched comparison children, children with ASD showed unattenuated performance on the DSR task, despite showing significant impairments in theory-of-mind task performance, and a reduced propensity to use personal pronouns to refer to themselves. The results may indicate intact temporally extended self-awareness in ASD. However, it may be that the DSR task is not an unambiguous measure of temporally extended self-awareness and it can be passed through strategies which do not require the possession of a temporally extended self-concept

    Radiation induced force between two planar waveguides

    Get PDF
    We study the electromagnetic force exerted on a pair of parallel slab waveguides by the light propagating through them. We have calculated the dependence of the force on the slab separation by means of the Maxwell--Stress tensor formalism and we have discussed its main features for the different propagation modes: spatially symmetric (antisymmetric) modes give rise to an attractive (repulsive) interaction. We have derived the asymptotic behaviors of the force at small and large separation and we have quantitatively estimated the mechanical deflection induced on a realistic air-bridge structure.Comment: 10 pages, 6 figure

    Sub-Banded Reconstructed Phase Spaces for Speech Recognition

    Get PDF
    A novel method combining filter banks and reconstructed phase spaces is proposed for the modeling and classification of speech. Reconstructed phase spaces, which are based on dynamical systems theory, have advantages over spectral-based analysis methods in that they can capture nonlinear or higher-order statistics. Recent work has shown that the natural measure of a reconstructed phase space can be used for modeling and classification of phonemes. In this work, sub-banding of speech, which has been examined for recognition of noise-corrupted speech, is studied in combination with phase space reconstruction. This sub-banding, which is motivated by empirical psychoacoustical studies, is shown to dramatically improve the phoneme classification accuracy of reconstructed phase space-based approaches. Experiments that examine the performance of fused sub-banded reconstructed phase spaces for phoneme classification are presented. Comparisons against a cepstral-based classifier show that the proposed approach is competitive with state-of-the-art methods for modeling and classification of phonemes. Combination of cepstral-based features and the sub-band RPS features shows improvement over a cepstral-only baseline
    • …
    corecore