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Abstract

A three-dimensional code for viscous cascade flow prediction has been developed. The

space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial

dissipation terms. Computational efficiency of a four-stage Runge-Kutta scheme is enhanced by

using variable coefficients, implicit residual smoothing, and a full-multigrid method. The

Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A zonal, non-periodic grid

is used to minimize mesh distortion in and downstream of the throat region. Applications are

presented for an annular vane with and without end wall contouring, and for a large-scale linear

cascade. The calculation is validated by comparing with experiments and by stuct_ ing grid

dependency.

_troduction,

Improving efficiency and specific work while reducing weight, cost, and number of

components and maintaining a good level of performance in a wide range of operational

conditions is the goal of turbomachinery design. The last decade has seen an impressive

evolution both in the understanding and in the simulation of flow features. In this process

Computational Fluid Dynamics (CFD) is playing a more and more important role. In

turbomachinery applications, modem components operate under very complex three-dimensional

flow conditions, and futher improvement of performance requires detailed knowledge of the flow

structure. Particularly, the need to predict off-design conditions, secondary flows, and heat

transfer forces us to look at viscous models. Even if a two-dimensional or quasi three-

dimensional analysis is very useful, three-dimensional simulation will be the basic tool in the
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design of the next generation of turbomachinery. The real flow inside a turbomachine is

unsteady and dominated by rotor-stator interactions and wake effects. However, the time-

accurate simulation of an entire turbine or compressor is beyond the capability of current

computers. On the contrary, a steady, viscous, blade-row analysis is now beginning to be

feasible for designers, although much effort is still needed to improve accuracy and to reduce the

computational cost. The works of Chima 2, Weber 2, Hah 3, Nakahashi 4, Choi 5, Dawes 6,

and Subramanian 7 are some important examples of three-dimensional viscous cascade flow

predictions.

In 1988, the University of Florence started a joint project with NASA (ICASE, and

ICOMP) on viscous cascade flow simulation. During this research project, we developed the

TRAF2D code (TRAnsonic Flow 2D) 8,9. This code is capable of solving two-dimensional

viscous cascade flows using H-type or C-type grids and of predicting heat transfer effects. In the

present paper the procedure is extended to the three-dimensional case (TRAF3D). Particular

attention has been dedicated to aspects which are important for the designer, such as accuracy,

computational cost, and the correct prediction of pressure, exit angles, and loss coefficients.

As for accuracy, a new kind of elliptically-generated C-type grid is stacked in three

dimensions. The removal of periodicity on the wake allows the grid to be only slightly distorted

even for cascades having a large camber or a high stagger angle. This allows us to pick up

details of the throat flow with a reasonable number of grid points. In addition, a very low level

of artificial dissipation is guaranteed by eigenvalues scaling, which is a three-dimensional

extension of the one proposed by Martinelli 1o, and Swanson and Turke111

As for efficiency, the Reynolds-averaged Navier-Stokes equations are solved using a

Runge-Kutta scheme in conjunction with accelerating techniques. Variable-coefficient implicit

residual smoothing, as well as the Full-Approximation-Storage multigrid scheme of Brandt and

Jameson have been used in the TRAF3D code. Those accelerating strategies are implemented in

conjunction with grid refinement to get a Full Multigrid Method. The two-layer eddy-viscosity

model of Baldwin and Lomax is used for the turbulence closure.

The capability of the code is shown by comparing the computed results to experiments for

the Goldman annular vane with and without end wall contouring, and for the low speed Langston

linear cascade. For the case of the vane, a grid dependency analysis is presented.

By using the accelerating strategies, detailed, viscous 3D solutions on a grid with nearly

half a million points can be obtained in less than one hour on a modem supercomputer such as a

Cray Y-MP.

Governing Equations

Let 19,u, v, w, p, T, E, and H denote respectively density, the velocity components in the

x, y, and z Cartesian directions, pressure, temperature, specific total energy, and specific total

enthalpy. The three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations,

neglecting body forces and heat sources, can be written for a fixed blade passage in conservative

form in a curvilinear coordinate system _, 77,_'as,
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The contravariant velocity components of eqs. (2) are written as,

U=¢xU+_yV+_w
V= rl:u+ rlyv+ Ozw

W= Cxu+ Cyv+ ¢zw

and the transformation metrics are defined by,

_x=J(YrlZ ( " YcZ rt)

_y=J(z,,x¢- z¢x,,)
{r=J(x ITyg " x gY_7)

rlx=J(y (z _- y_z _)

rly=J(z _,'(,¢ " 7.¢x ff)

rTz=J(x (y ¢- x Cy ()

Cx= J(Y cZ _7 " z CYrT)

cy=qqxo' xcz.)
_= J(x_yo - y_x o)

(2)

(3)

(4)

where the Jacobian of the transformation J is,
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where,

_=2uz5 + _(ux+Vy+W0
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_:='-_wz+_(u_+v,+w0
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(7)

and the Cartesian derivatives of (7) are expressed in terms of _-, rl-, and _-derivatives using the

chain rule, i.e.,

u= ¢u¢ + flu,7+ _'u¢ (8)

The pressure is obtained from the equation of state,

p=pRT (9)

According to the Stokes hypothesis Z is taken to be -2g/3 and a power law is used to determine

the molecular coefficient of viscosity/_ as function of temperature. The eddy-viscosity hypothesis

is used to account for the effect of turbulence. The molecular viscosity _ and the molecular

thermal conductivity k are replaced with,

u=ut + u t (10)

k=cp[(P_r)l+ (P_r)t] (11)

where cp is the specific heat at constant pressure, Pr is the Prandtl number, and the subscripts 1

and t refer to laminar and turbulent respectively. The turbulent quantifies _t and Prt are computed

using the two-layer mixing length model of Baldwin and Lomax 12. The contribution of the eddy

viscosity is computed separately in the blade-to-blade direction r/and in the spanwise direction _'.

The inverse of the square of the wall distances d is then used to compute the resulting eddy

viscosity,
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_' = f (_t)t7 + (1-f)(_,): (13)

The transitional criteria of Baldwin and Lomax is adopted on the airfoil surface while on the end

walls the shear layer is assumed to be fully-turbulent from the inlet boundary.

Soatial Discretiz_ti0n

Traditionally, using a finite-volume approach, the governing equations are discretized in

space starting from an integral formulation and without any intermediate mapping. The

transformation metrics of (4) can be then associated with the projections of the face areas as the

contravariant components of (3) can be related to the normal components of velocity. In the

present work, due to the large use of eigenvalues and curvilinear quantities, we found it more

convenient to map the Cartesian space (x,y,z) in a generalized curvilinear one (¢, 0, _'). In the

curvilinear system, the equation of motion (1) can be easily rewritten in integral form by means

of Green's theorem and the metric terms are handled following the standard finite-volume

formulation. The computational domain is divided into hexahedrons and the transformation

metrics are evaluated so that the projected areas of the cell-faces are given by the ratio of the

appropriate metric derivatives to the Jacobian ones, i.e. _/J is the projection onto the x-axis of a

cell face at a fixed _ location. A cell-centered scheme is used to store the flow variables. On

each cell face the convective and diffusive fluxes are calculated after computing the necessary

flow quantities at the face center. Those quantities are obtained by a simple averaging of adjacent

cell-center values of the dependent variables.

Boundary Condifion_

It is well known that, when dealing with a time-marching formulation, the reflecting

behavior of the numerical boundary conditions must be minimized in order to enhance the

convergence rate to the steady state. In cascade calculations we have four different types of

boundaries: inlet, outlet, solid walls, and periodicity. According to the theory of characteristics,

the flow angles, total pressure, and total enthalpy are specified at the subsonic-axial inlet, while

the outgoing Riemann invariant is taken from the interior. The presence of an inlet boundary

layer, on hub and tip end walls, is accounted for by giving a total pressure and a total temperature

profile whose distribution simulates the experimental one. At the subsonic-axial outlet, the

average value of the static pressure at the hub is prescribed and the density and components of

velocity are extrapolated together with the circumferential distribution of pressure. The radial

equilibrium equation is used to determine the spanwise distribution of the static pressure. On
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solid walls, the momentumequation,theno-slip condition,andthetemperaturecondition are
usedto computepressureanddensity. For thecalculationspresentedin thispaper,all thewalls
havebeenassumedto beadiabatic.

Cell-centeredschemesaregenerally implementedusing phantomcells to handlethe
boundaries. The periodicity from blade passageto blade passageis, therefore, easily
overimposedby settingperiodic phantomcell values. On the wake, wherethe grid is not
periodic,thephantomcellsoverlaptherealones.Linearinterpolationsarethenusedto compute
thevalueof thedependentvariablesinphantomcells.

Artificial Dissipation

In viscous calculations, dissipative properties are present due to diffusive terms. As well

experienced away from the shear layer regions, the physical diffusion is generally not sufficient

to prevent the odd-even point decoupling of centered schemes. Thus, to maintain stability and to

prevent oscillations near shocks or stagnation points, artificial dissipation terms are also included

in the viscous calculations. Equation (1) is written in semi-discrete form as,

_ + C(Q) - D(Q) = 0 (14)

where the discrete operator C accounts for the physical convective and diffusive terms, while D is

the operator for the artificial dissipation. The artificial dissipation model used in this paper is

basically the one originally introduced by Jameson, Schmidt, and Turke113. In order to

minimize the amount of artificial diffusion inside the shear layer, the eigenvalues scaling of

Martinelli 1°, and Swanson and Turke111 have been used to weight these terms. The quantity

D(Q) in eq. (14) is defined as,

24)D 4 2 .D 4 +D(-D( QD(Q) = _ -D_ +Dr1 17 (15)

where, for example, in the _ curvilinear coordinates we have,

D2 Q = V_(Zi+l/2.j. k e (2) ' A tOi +l /2,j,k ) _ i,j,k

De Q = V_ (Ai+l/2,j, k F.(4) A V A4 i+l/2,j,k) _ _ {Qi,j,k

(16)

i, j, k are indices associated with the _, rl, ( directions and A_, V_ are forward and backward

difference operators in the _ direction. Following the works of refs. 10 and 11, the variable

scaling factor A is defined for the three-dimensional case as,
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f f(z,),,.,+(z,),+,j.J (17)

where,

(18)

The def'mition of the coefficient _ has been extended to the three-dimensional case as follows,

St/= I+ + (19)

O"

where ;t_, _'v' and ;t¢ are the scaled spectral radii of the flux Jacobian matrices for the convective

terms,

_'rl = IVl + a + fly + 77z

+ fy + ¢2g

(20)

and a is the speed of sound. The exponent a is generally defined by 0 < a_': I, and for two-

dimensional applications, the value of 2/3 gives satisfactory results. In three-dimensional

cascade flow calculations, we generally have highly stretched meshes in two directions near

comers. We found that o'=-0.4 introduces enough scaling without compromising the robustness.

The coefficients #2) and _4) use the pressure as a sensor for shocks and stagnation points, and

are def'med as follows,

2) _I¢.(2)MAX i,j,k i+l,j,k i+2,j,k)+ll2,j,k--" ( Vi.l,j,k,V ,V ,V (21)



I Pi'l'J'k'2Pi'J'k+Pi+l"J'k iVij.k = iPi.lj,k+2Pij,k+Pi+l.j,k

4) 2)4:::..=
where typical values for the constants K (2) and K(4) are 1/2 and 1/64 respectively.

:_ (22)

"(23)

For the

remaining directions r/and (, the contribution of dissipation is defined in a similar way. The

computation of the dissipative terms is carded out in each coordinate direction as the difference

between first and third difference operators. Those operators are set to zero on solid walls in

order to reduce the global error on the conservation property and to prevent the presence of

undamped modes 11,14,15

Time-Stepping Scheme

The system of the differential equation (14) is advanced in time using an explicit four

stage Runge-Kutta scheme until the steady-state solution is reached. A hybrid scheme is

implemented, where, for economy, the viscous terms are evaluated only at the first stage and then

frozen for the remaining stages. If n is the index associated with time we will write it in the

form,

Q(O) = Qn

Q_I> = Q:O) + al At R (t2 (0))

Q:2> = Q_O) + ot2 At R (_1))

Q(3) = Q(O) + ot3 At R (Qfl2))

Q(4) = Q:O) + ot4 At R (_3>)

Qn+l = _4)

1 1 1
Otl = -_, Or2= 3, Ot3 = _, Ot4 = l

(24)

where the residual R (Q) is defined by,

R (Q) = AtJ IC(Q)- D(Q)I (25)

Good, high-frequency damping properties, important for the multigrid process, have been

obtained by performing two evaluations of the artificial dissipative terms, at the first and second

stages. It is worthwhile to notice that, in the Runge-Kutta time-stepping schemes, the steady

state solution is independent of the time step; therefore, this stepping is particularly amenable to

convergence acceleration techniques.
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Acceleration Technique,s

In order to reduce the computational cost, four techniques are employed to speed up

convergence to the steady state-solution. These techniques: 1) local time-stepping; 2) residual

smoothing; 3) multigrid; 4) grid refinement; are separately described in the following.

l.x_cal Time-Stepping

For steady state calculations with a time-marching approach, a faster expulsion of

disturbances can be achieved by locally using the maximum available time step. In the present

work the local time step limit At is computed accounting for both the convective (Atc) and

diffusive (Atd) contributions as follows,

At = co ( AtcAtd

LA'c+Ata

(26)

where c o is a constant usually taken to be the Courant-Friedrichs-Lewy (CFL) number.

Specifically, for the inviscid and viscous time step we used,

1
- (27)

c /q._+:t.r1+:t._,

1
Ate_ (28)

Ktp pr(71"Ij2 S2rlS2.+_$2.+ _S2r/)

where 7 is the specific heat ratio and,

2 2 2 2
¢=x_+y¢+z_ ,

,,2 2 2 2 .,2 2 2 2

, _(=x_+y_+z(S rT=XrT+yrT+Zrr (29)

K t being a constant whose value has been set equal to 2.5 based on numerical experiments.

Residual smogthing

An implicit smoothing of residuals is used to extend the stability limit and the robustness

of the basic scheme. This technique was ftrst introduced by Lerat ]6 in 1979 in conjunction with

Lax-Wendroff type schemes. Later, in 1983, Jameson 17 implemented it on the Runge-Kutta

stepping scheme. In three dimensions we carried out the residual smoothing in the form,

(1-fl_ VgAg)(1-flr_VrTAn)('-fl¢V¢_¢) R= R (30)
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where the residual R includes the contribution of the variable time step and is defined by (25) and

/_ is the residual after a sequence of smoothing in the _, r/, and _ directions with coefficients fie,

/3rt, and fl_.

For viscous calculations on highly stretched meshes the variable coefficient formulations

of Martinelli 1° and Swanson 11 have proven to be robust and reliable. In the present paper, the

expression for the variable coefficients /3 of (30) has been modified to be used in three

dimensions as follows,

,-_ L_CFL, &_+&rl+,_ Or1 -1
(31)

, LL  L, ,¢ -1

where the coefficients 0_, 0n, and 0_ are the ones defined in eqs. (19), and CFL, and CFL" are

the Courant numbers of the smoothed and unsmoothed scheme respectively. For the hybrid

four-stage scheme we used CFL=5, and CFL'=2.5.

Moltigrid

This technique was developed in the beginning of the 1970s for the solution of elliptic

problems 18 and later was extended to time-dependent formulations 19,20.

The basic idea is to introduce a sequence of coarser grids and to use them to speed up the

propagation of the fine grid corrections, resulting in a faster expulsion of disturbances. In this

work we used the Full Approximation Storage (FAS) schemes of Brandt 18 and Jameson 20

Coarser, auxiliary meshes are obtained by doubling the mesh spacing and the solution is

defined on them using a rule which conserves mass, momentum, and energy,

where the subscripts refer to the grid spacing, and the sum is over the eight cells which compose

the 2h grid cell. Note that this definition coincides with the one used by Jameson when the

reciprocal of the Jacobians are replaced with the cell volumes. To respect the fine grid

10



approximation,forcing functionsP are defined on the coarser grids and added to the governing

equations. So, after the initialization of Q2h using eq.(32), forcing functions P2h are defined as,

R /_(o)
P2h = _Rh(ah)" 2h[l,d.2h ] (33)

and added to the residuals R,eh to obtain the value R_h which is then used for the stepping

scheme.

R2h = R2h(Q2h) + P2h (34)

This procedure is repeated on a succession of coarser grids and the corrections computed on each

coarse grid are transferred back to the finer one by bilinear interpolations.

A V-type cycle with subiterations is used as a mu!tigrid strategy. The process is

advanced from the fine grid to the coarser one without any intermediate interpolation, and when

the coarser grid is reached, corrections are passed back. One Runge-Kutta steps is performed on

the h grid, two on the 2h grid, and three on all the coarser grids. It is our experience in cascade

flow calculations that subiterations increase the robustness of the multigrid.

On each grid, the boundary conditions are treated in the same way and updated at every

Runge-Kutta stage. For economy, the artificial dissipation model is replaced on the coarse grids
with constant coefficient second-order differences.

The interpolations of the corrections introduce high frequency errors. In order to prevent

those errors from being reflected in the eddy viscosity, turbulent quantities are updated after

performing the stepping on the fine grid. On coarse grids the turbulent viscosity is evaluated by

averaging the surrounding fine grid values.

Grid Refinement

A grid refinement strategy is used to provide a cost-effective initialization of the fine grid

solution. This strategy is implemented in conjunction with multigrid to obtain a Full Multigrid

(FMG) procedure. With the FMG method, the solution is initialized on a coarser grid of the

basic grid sequence and iterated a prescribed number of cycles of the FAS scheme. The solution

is then passed, by bilinear interpolations, onto the next, finer grid and the process is repeated

until the finest grid level is reached. In the present paper we have introduced three levels of

refinement with respectively two, three, and four grids.

Computational Grid

The three-dimensional grids are obtained by stacking two dimensional grids generated on

the blade-to-blade surface (_, r/ plane). In the blade-to-blade projection, the grids are non-periodic

C-type ones and are elliptically generated, controlling the grid spacing and orientation at the wall.

The C-type structure has been chosen to model the blunt leading edge typical of turbine blading.

11



Theproblemof grid skewnessdueto highstaggeror largecamberis addressedby allowing the
grid to benon-periodiconthewake. Thisgrid structure,recentlyintroducedby theauthors9for
two-dimensionalapplications,hasproventobeeffectivein turbomachineryapplications.

In thespanwisedirection(_ a standardH-typestructurehasbeenadopted.Nearthehub
andtip wallsgeometricstretchingis usedfor aspecifiednumberof grid points,after whichthe
spanwisespacingremainsconstant.

_.pplications and Discussion

As applications of the procedure that has been described above, we used the TRAF3D

code to predict the flow in an annular and in a linear cascade. The annular cascade is the one

tested by Goldman and Seashohz 21,22, and experiments are available for configurations both

with and without end wall contouring. The inlet boundary layer for this case is quite thin and the

secondary flows are not extremely pronounced. On the contrary the large-scale linear cascade of

Langston 23,24 is a nice test case to investigate the code's capability of predicting the three-

dimensional features of the flow.

Calculations for these three blade passages will be presented in this section along with a

grid sensitivity study.

Goldman Annular Vane

This annular vane was tested by Goldman 21 at NASA Lewis with laser anemometer

measurements. Pressure distribution in the blade passage, and details of the exit losses and angle

spanwise variations made this test very interesting for code assessment.

In a previous work of ours 9 we carried out a two-dimensional grid dependency study in

order to figure out the mesh requirements necessary to obtain a space-converged calculation,

especially for skin friction and heat transfer predictions. Those results can be extrapolated to the

three-dimensional case but the resulting number of grid points is quite large: nearly half million

points. In three-dimensional applications, the memory and time requirements can be large, even

for a modem supercomputer, so a grid dependency study can be useful in optimizing the mesh

size. We introduced three grids of respectively 97x17x25, 127x25x49, and 177x33x65 grid

points. The fine mesh spacing at the wall is 2×10 -4 axial chord in the the blade-to-blade direction

and 5x10 4 in the spanwise one. Using those spacings, the y+ at the wall is roughly less than

two when the exit Reynolds number is about one million. On the medium and coarse grids the

wall spacings are respectively two times and four times the fine grid ones. On the three meshes

there are respectively 33, 49, and 65 points on the suction surface of the airfoil. A three-

dimensional view of the fine grid for the Goldman cascade without end-wall contouring is given

in fig. l(a). The low level of skewness obtained by stacking non-periodic C-type grids is

evident.

The convergence of the root mean square of the residuals of the continuity equation is

given in fig. 2(a). This calculation refers to the fine mesh (380,000 grid points) and requires

about 45 minutes on the NASA Lewis Cray Y-MP. If we assume we have reached a good level

of convergence when the residuals have dropped four decades, the medium mesh (156,000 grid

12



points) takes 15 minutes, while about 6 minutes are needed for the coarse mesh calculation

(41,000 grid points).

For this test case, the inlet flow is axial and the exit isentropic Mach number at the hub is

about 0.809. Figures 2(b), (c), and (d) show the experimental and computed isentropic surface

Mach number distribution near the hub, at midspan, and near the tip. All the grids correctly

predict the distribution, the slight underestimation of the coarse grid with respect to the medium

and fine ones is mostly due to the higher level of predicted losses. --

In ref. 21 Goldman measured the spanwise distributions of the aftermixed pressure, exit

flow angle, total pressure loss coefficient, and energy loss coefficient at 1/3 axial chord away

from the trailing edge. The predicted distribution of these quantities is compared to experiments

in fig. 3. The agreement is very good on the whole. The radial distribution of the static pressure

is accurately reproduced (see fig. 3(a)), while the exit angle is qualitatively the same on all the

grids but with a smoother distribution with respect to experiments (fig.3(b)). From the plots of

total pressure and energy loss coefficients of figs. 3(c) and (d) we can draw some interesting

conclusions. In the coarse grid, with only 25 points in the hub to tip direction, the distribution of

the losses is only roughly captured. We need at least 49 points to have a spanwise loss

prediction which is nearly space-converged. Coarse grid losses are also twice as large as the

experiment at midspan, thus cont"mating the indication of the two-dimensional analysis 9 which

suggested the use ofy ÷ near the unity. Both the medium and fine grids predict the losses well,

except near the tip, where the boundary layer is thicker. The kink in the losses is computed
closer to the wall than experiments indicate.

The position of the horseshoe vortices near the hub and tip is given in fig. 4. The

enlargements show the counter-rotating comer vortices.

The lift of the passage vortex on the suction side of the airfoil is evident from the particle

trace near the wall of fig.5(a). The effect is more pronounced near the tip because of the thicker
inlet boundary layer.

Goldman Annular Vane With Contoured End Wall

Figure l(b) shows the 177x33x65 computational mesh for the Goldman vane with an s-

shape contoured end wall at the hub after midchord. Some details of the calculation for this case

are summarized in figs. 5(b) and 6. The exit isentropic Mach number at the hub is now about

0.695. The computed surface isentropic Mach number agrees well with experiments 22 near the

hub, at midspan, and near the tip. On the hub the presence of the contoured end wall causes a

stronger pressure gradient between pressure and suction sides as a result the flow lift of soner on

the suction side as shown by the simulated oil flow-trace of fig. 5(b).

Langst0n L0w-Speed Linear Cascade

Langston et al. 23 in 1976 made detailed measurements in a low-speed, large-scale plane
turbine cascade. The work included experimental visualizations of the three-dimensional nature

of the flow. The flow exhibits important three-dimensional separation on both airfoil surface and
end wail.

Even though the flow conditions of this test are at very low speed and not amenable to

calculations using compressible flow codes, the Langston cascade is quite often used in three-
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dimensional code validation. The 177x33x65 grid we used is depicted in fig. 7. Graziani 2a

took these visualizations of the flow for two different inlet boundary layer thicknesses. As the

aim of this study is to investigate the capability of reproducing the three-dimensional features of

the flow, we are reporting calculations for the thick inlet boundary layer. Figure 8 compares the

predicted and measured end wall limiting streamlines. The structure of the flow, as well as the

position of the saddle point, are in good agreement with experiments. The fact that the computed

saddle point is ahead of the experiment is common to several calculations (i.e. refs. 5 and 7). In

our opinion this discrepancy can be partially attributed to the difficulty of having very similar inlet

boundary layers in the calculations as in the experiments. On the suction surface of the airfoil,

the particle traces of fig. 9 and the experimental limiting streamlines clearly demonstrate the

code's capability in predicting the three-dimensional flow separation.

Conclusions

The central-difference, finite-volume scheme with eigenvalue scaling for artificial

dissipation terms, variable-coefficient implicit smoothing, and full multigrid has been extended to

predict three-dimensional viscous cascade flows. We report the comparisons of calculations

with experiments for the Goldman annular cascade with and without end wall contouring, and for

the Langston cascade. Good overall predictions can be obtained with the Baldwin-Lomax

turbulence model both in terms of pressure distribution and loss coefficients, for the cases

studied. The grid dependency study has also been conducted to determinate the grid spacing

necessary to capture fine details of the three-dimensional viscous flows. With these accelerating

strategies, detailed three-dimensional viscous solutions can be obtained for a reasonable fine grid

in less than one hour on a modem supercomputer.
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a) Without contoured end wall

b) With contoured end wall

Fig. I 177x33x65 Computational grids for the Goldman

annular vanes with and without contoured end walls.
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a) Non-contoured end wall
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b) Contoured end wall
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Fig. 5 Particle traces on the suction side of the Goldman annular vane.
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Fig. 7 177x33x65 computational grid for the Langston cascade.

/

/

/

./

/
/ /

a) Computed

\

2.0

1_8

1,6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4
--0.4-0.2 0 0.2 0.4 0.60.IS 1.0 1o2 1.4 1.6

b) Experiment Ref. 23,24

Fig. 8 Computed and experimental end wall limiting stream lines.

22



a) Computed b) Computed

METAL [NOWALL

MIDSPAN

t
!

I
!

I
!

I
2-O LEADING[OG['_

STAGNATIONLINE

C) Experiments Ref. 23,24

Fig. # Langston cascade. Computed and experimental limiting

streamlines on suction side.

23



- I Form Approved

REPORT DOCUMENTATION PAGE 1 OMB No. 0704.018d
Public report/rig burden for _ia oollection of in(on'nation I$ estimated to average 1 hour per resp0tlse, inolualng the t;me ]or reviewing instructions, searching existir_g data Sources
0affecTing and maintldnlnO the data needed, _ completing and reviewing the o011ect_onof intormation, Send comments regarding this burden estimate or shy other aspect of this
0oNce'don of In(onnafon, kx=luding suggestions for reducing this burden, to Wuhington Headquarters Services, Directorm]e for information Operations and Repods, 1215 Jefferson
Davis Highway. Suite 1204, Arlington. VA 22202-4_)2, end to the Offic_ of M_agement _ Budge], Paperwork Reduction Pro_ect (0704-0188), Washington, DC 20503

1. AGEN(_Y USE ONLY (Leave blank) 2. REPORT DATE a. REPORT TYPE AND DATES COVERED

October 1991

4. TITLE AND SUBTITLE

Multigrid Calculation of Three-Dimensional Viscous Cascade Flows

6. AUTHOR(S)

A. Amone, M.-S. Liou, and L.A. Povinelli

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135- 3191

6. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546- 0001

11. SUPPLEMENTARY NOTES

Technical Memorandum

5 FUND,NGNU_;_ERS

WU- 505 - 62 - 21

S. PERFORMING ORGANIZATION

REPORT NUMBER

E-6587

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM- 105257

ICOMP-91-18

A. Arnone, University of Florence, Florence, Italy and Institute for Computational Mechanics in Propulsion, Lewis

Research Center, Cleveland, Ohio (work funded under Space Act Agreement C-99066-G). M.-S. Liou and L.A.

Povinelli, NASA Lewis Research Center. Space Act Monitor: Louis A. Povineili, (216) 433-5818.

12a. DISTRIBUTIONIAVAILABII.ITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 64

13. ABSTRACT (Maximum 200 words)

A three-dimensional code for viscous cascade flow prediction has been developed. The space discretization uses a

cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of

a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a fult-

multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A zonal, non-periodic

grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an

annular vane with and without end wail contouring, and for a large-scale linear cascade. The calculation is vali-

dated by comparing with experiments and by studying grid dependency.

14. SUBJECT TERMS

Navier-Stokes; Cascade; Muhigrid; Three-dimensional

17. SECURITYCLASSiFICATION

OFREPORT

Unclassified

NSN 7540-01-280-5500

lB. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19 SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std Z39-18
298-102


