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Abstract: This paper introduces a novel approach to the analysis and classification of time series signals 
using statistical models of reconstructed phase spaces. With sufficient dimension, such reconstructed 
phase spaces are, with probability one, guaranteed to be topologically equivalent to the state dynamics 
of the generating system, and, therefore, may contain information that is absent in analysis and 
classification methods rooted in linear assumptions. Parametric and nonparametric distributions are 
introduced as statistical representations over the multidimensional reconstructed phase space, with 
classification accomplished through methods such as Bayes maximum likelihood and artificial neural 
networks (ANNs). The technique is demonstrated on heart arrhythmia classification and speech 
recognition. This new approach is shown to be a viable and effective alternative to traditional signal 
classification approaches, particularly for signals with strong nonlinear characteristics. 
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SECTION I. 

Introduction 

We present this new approach based on reconstructed phase spaces (RPSs) as an 
alternative to traditional linear approaches to signal analysis and classification, which are 
typically based on frequency domain characteristics. The underlying assumption of 
traditional linear methods is that the salient information about signal characteristics is 
contained in the frequency power spectrum. From a stochastic process perspective, the 
first- and second-order statistics of the signal are represented by this power spectral 
information.  

 
Fig. 1. Signals, broadband power spectra, and reconstructed phase spaces for two examples. 

However, there are many types of signals, both theoretical and experimental, for 
which a frequency domain representation is insufficient, because it is generally not 
possible to distinguish between signals that have the same power spectra but differing 
phase and/or higher order spectra. For example, signals generated through nonlinear 
differential or difference equations typically exhibit broadband power spectral 
characteristics that are difficult to interpret, because the spectra do not contain sharp 
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resonant peaks. An illustrative example of two signals that are indistinguishable using 
power spectral classification methods are seen in Fig. 1. The first signal in Fig. 1 is the 
logistic map 𝑥𝑥𝑛𝑛+1 = 𝑘𝑘𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛), with 𝑘𝑘 = 4. The second is the logistic map's FT surrogate, 
which maintains the signal's Fourier transform amplitude, but randomizes the phase.1 

Fig. 1 provides a graphical motivation for the signal analysis and classification 
approach presented in this paper. Signal classification techniques based on power spectral 
information can not distinguish between different signals that have the same power 
spectrum, but such signals may be distinguishable in a RPS. Additionally, the underlying 
theory, outlined in more detail in Section III, guarantees that the dynamics of any system 
are fully described by a RPS generated from any single state variable, provided that the 
dimension of the RPS is greater than twice the box counting dimension of the original 
system.2 From a practical perspective for discrete-time signals, this means that a RPS, 
which is a multidimensional plot of the time series signal against time-delayed versions of 
itself, contains all the information of the underlying system.3 

The particular models used here are statistical distributions that can be learned 
over RPSs and then used to classify unseen signals. Both nonparametric distributions based 
on binning and occurrence counts and parametric distributions based on Gaussian mixture 
model (GMM) distributions are illustrated. Two types of classifiers are applied: a Bayes 
maximum likelihood classifier and an artificial neural network (ANN) classifier. 

Thus, the proposed approach is particularly suited for differentiating between 
signals where the phase of the signal contains important differentiating information, 
because such differentiating phase information is captured by the RPS, or where the state 
structure captured by the RPS reveals state variables and relationships between state 
variables that provide greater differentiability across classes than the original state 
variable by itself. 

The new approach is applied to two domains—distinguishing heart arrhythmia and 
speech phoneme classification. The results from these two applications show that this new 
approach can be applied to a variety of signal classification problems. 

Previous work in signal classification is discussed in Section II. Background of the 
underlying dynamical system's theory is given in Section III, with detailed descriptions of 
the distribution models, learning algorithms, and classification techniques in Section IV. 
Section V discusses the experimental setup and results, with conclusions in Section VI. 
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Section II. 

Previous Work 

In addition to the traditional signal analysis models based on spectrum amplitude 
such as autoregressive modeling4 or cepstral analysis,5 there is also a large body of work on 
signal detection and classification in the field of communications,6 based on statistical 
decision theory. These methods are founded on the existence of an a priori underlying 
transmission or symbol model that can be used to analytically determine closed form 
conditional distributions for each signal class and derive a maximum likelihood detector. In 
the case of arbitrary signal classification, with complex underlying systems such as heart 
rhythms and speech, such complete time-domain signal models do not exist. The general 
approach to classification for these systems is based on machine learning principles, using 
preprocessing to identify relevant features for classifier models, rather than a symbol-
based time-domain representation. 

Most research in using RPSs focuses on estimating dynamical invariants, which are 
not sensitive to initial conditions or smooth transformations of the space. These invariants 
may be classified into three categories: metric (Lyapunov exponents and dimension), 
natural measure (density),7 and topology. Various methods of estimating dimension have 
been proposed, such as correlation dimension,8 minimum phase space volume,9 and box 
counting.7 Density estimation techniques are typically histogram10,11 or GMM12 based. 
Topological analysis techniques include templates13 and global vector field 
reconstruction.14 

Dynamical systems methods have been used in many applications. Lyapunov 
exponents have been used for classifying signals as chaotic14 and as additional features for 
speech recognition.15 Fractal dimension, Richardson dimension, Lempel-Ziv complexity, 
and Hurst exponent have been used as features for classifying simulated and beta emission 
signals.16 Estimates of dimensions have been used to analyze speech17 and heart rate 
variability.18 However, estimation of metric invariants is highly sensitive to noise and 
sample size. Without large sample sizes and the use of nonlinear filtering techniques, their 
estimations are suspect.19 

Topological analysis techniques such as templates13 have been applied to simulated 
chaotic systems,20 voltage,20 and laser21 time series. Global modeling techniques have been 
applied to the computation of Lyapunov exponents14 and biological signal classification.22 
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The topological analysis approach fits a functional model to the attractor. This approach is 
seen in.22 

However, there is relatively little literature directly applying RPSs to classification. 
Our approach differs from metric-based approaches by modeling the density of the RPS 
directly instead of calculating a measure of an average trajectory divergence (Lyapunov 
exponents) or estimating the dimension. The work presented here develops statistical 
features of RPSs, whereas topological analysis approach builds global vector 
reconstructions. 

Section III. 

Phase Space Reconstruction Theory 

The basis of this approach is that given access to the state structure of a system, a 
classification of such systems can be developed. We start by presenting a theoretical 
construct of the problem. Given a finite-dimensional system state space 𝑀𝑀 and 𝜑𝜑: 𝑀𝑀 → 𝑀𝑀, 
the dynamics of the system, a system is described by the pair ⟨𝑀𝑀, 𝜑𝜑⟩. We then define a set Φ 
of all possible dynamics on 𝑀𝑀 with a topology 𝔗𝔗. Without loss of generality, we assume 𝑀𝑀 
to be 𝑑𝑑-dimensional, because given any 𝑀𝑀′ ⊂ 𝑀𝑀 can be replaced by 𝑀𝑀 ∪ 𝑀𝑀′. The system 
classification then becomes one of partitioning 𝛷𝛷 according to the requirements of the 
classification problem with a particular dynamics 𝜑𝜑 identified with a particular partition 𝑃𝑃𝑖𝑖 
such that Φ =∪ 𝑃𝑃𝑖𝑖, where 𝑃𝑃𝑖𝑖 ∩ 𝑃𝑃𝑗𝑗 = ∅. 

The problem for real world systems is how to gain access to and represent 𝜑𝜑 for a 
particular system. The approach used here is phase space reconstruction, also known as 
phase space embedding, and was first proposed in.23 The methods for representing 𝜑𝜑, 
which are the contributions of this work, are presented in the following section. 

The central premise is that a space and its associated dynamics, which are 
topologically equivalent to the original system space 𝑀𝑀 and its dynamics 𝜑𝜑, can be 
recovered or unfolded from a time series of observations of a single state variable for the 
original system ⟨𝑀𝑀, 𝜑𝜑⟩. 

Whitney showed that an 𝑑𝑑-dimensional topological space can be embedded in 
ℝ2𝑑𝑑+1,24 where an embedding is a homeomorphic mapping from one topological space to 
another. Takens3 showed that it is a generic property that the map Φ(𝜑𝜑,𝑥𝑥): 𝑀𝑀 → ℝ2𝑑𝑑+1 
defined by  
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Φ(𝜑𝜑,𝑥𝑥)(𝑦𝑦) = �𝑥𝑥(𝑦𝑦), 𝑥𝑥�𝜑𝜑(𝑦𝑦)�, … , 𝑥𝑥 �𝜑𝜑2𝑑𝑑(𝑦𝑦)�� 

(1) 
 
is an embedding, where 𝑀𝑀 is an 𝑑𝑑-dimensional state space, 𝜑𝜑: 𝑀𝑀 → 𝑀𝑀 is a twice 
continuously differentiable diffeomorphism that describes the dynamics of the system, and 
𝑥𝑥: 𝑀𝑀 → ℝ is a twice continuously differentiable function representing the observation of a 
single state variable. 

Working from these original theorems, Sauer and Yorke2 extended Takens' work by 
showing that almost every time-delay map Φ(𝜑𝜑,𝑥𝑥) is an embedding, indicating that except 
for a set of degenerate cases with measure zero, the topological equivalence property is 
guaranteed. Therefore, these theorems guarantee that for almost every time delay 
embedding, the reconstructed dynamics of such a map are topologically identical to the 
true dynamics of the system.2 In addition, they found a tighter bound on the required 
dimension as 𝑑𝑑 > 2𝑑𝑑0, where 𝑑𝑑0 is the boxcounting dimension of the attractor of the 
underlying system. 

In other words, we have a mechanism for obtaining a continuous, one-to-one, and 
onto transformation from ⟨𝑀𝑀, 𝜑𝜑⟩ to ⟨ℝ𝑑𝑑, 𝐗𝐗⟩, where 𝑑𝑑 > 2𝑑𝑑0 and 𝑿𝑿 is the trajectory matrix 
defined as follows. Given a time series 𝑥𝑥 = 𝑥𝑥𝑛𝑛, 𝑛𝑛 = 1, … , 𝑁𝑁, a sequence of state variable 
observations, a trajectory matrix 𝑿𝑿 of dimension 𝑑𝑑 and time lag 𝜏𝜏 is defined as  

𝐗𝐗 = �

𝐱𝐱1+(𝑑𝑑−1)𝜏𝜏
𝐱𝐱2+(𝑑𝑑−1)𝜏𝜏

⋮
𝐱𝐱𝑁𝑁

� = �

𝑥𝑥1+(𝑑𝑑−1)𝜏𝜏 ⋯ 𝑥𝑥1+𝜏𝜏 𝑥𝑥1
𝑥𝑥2+(𝑑𝑑−1)𝜏𝜏 ⋯ 𝑥𝑥2+𝜏𝜏 𝑥𝑥2

⋮ ⋱
𝑥𝑥𝑁𝑁 ⋯ 𝑥𝑥𝑁𝑁−(!𝑑𝑑−2)𝜏𝜏 𝑥𝑥𝑁𝑁−(!𝑑𝑑−1)𝜏𝜏

�
 

(2) 
 
where each row vector in the matrix represents a single point in the space;  
 

𝐱𝐱𝑛𝑛 = [𝑥𝑥𝑛𝑛−(𝑑𝑑−1)𝜏𝜏 ⋯ 𝑥𝑥𝑛𝑛−𝜏𝜏 𝑥𝑥𝑛𝑛] 
(3) 
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where 𝑛𝑛 = (1 + (𝑑𝑑 − 1)𝜏𝜏) … 𝑁𝑁. A row vector 𝐱𝐱𝑛𝑛 is a point in the RPS. The pattern traced out 
by 𝑿𝑿 in ℝ𝑑𝑑 is typically referred to as an attractor, even when the technical definition of an 
attractor is not formally met. We adopt this terminology. 

Recall, that the system/signal classification problem in this work is addressed by 
transforming a signal from a particular system into a RPS, which has a mathematical 
correspondence with the underlying system. Therefore, given 𝔛𝔛, the collection of all 
possible RPSs 𝑿𝑿, the system/signal classification problem is to define a partition of 𝔛𝔛 such 
that 𝔛𝔛 =∪ 𝑃𝑃𝑖𝑖and a mechanism for identifying a particular 𝑿𝑿 with a particular 𝑃𝑃𝑖𝑖. 

As is discussed next, a statistical machine learning approach is taken for defining the 
partition and for identifying an 𝑿𝑿 with a 𝑃𝑃𝑖𝑖. In general, the classification accuracy will 
depend on how well the model of a partition 𝑃𝑃𝑖𝑖 of 𝔛𝔛 characterizes the signals that are 
labeled as belonging to that partition and how different the model of 𝑃𝑃𝑖𝑖 is from the models 
of other partitions. 

Section IV. 

Methods 

As aforementioned, the approach adopted here is based on direct statistical 
modeling of the RPS, through the estimation of a joint probability density function over that 
space. Both discrete nonparametric and continuous parametric distributions are 
implemented. There are three main steps to applying the new methods. The first step, data 
analysis, is to determine the time lag and embedding dimension of the RPS and compensate 
for any nonstationarity of the observation function. The second step is to generate 
statistical models of the attractors. This is done using both discrete and continuous models. 
The final step is to build classifiers. 

A. Data Analysis 

To construct a RPS from a signal, the dimension of the RPS and the time lag at which 
to sample the signal must be selected. Although proper selection of dimension and time lag 
may appear to be critical to the success of the methods presented in this paper, in practice 
the methods presented here are effective across a range of dimensions and time lags. In 
addition, existing methods for choosing time lag, such as the first minimum of the 
automutual information function or the first zero crossing of the autocorrelation,25 
dimension, such as false nearest neighbor26 or Cao's method,27 or both,28,29 do not optimize 
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to classification accuracy. Hence, they provide only a first estimate of appropriate time lags 
and dimensions. Thus, as proposed in,12 the mode of distribution of the first minimum of 
the automutual information function across all signals is used as an initial estimate of the 
time lag. Similarly, the mean plus two standard deviations of the distribution of false 
nearest neighbor dimensions across all signals is used as an initial estimate of the 
dimension. We show that the best empirical time lag and dimension may differ from the 
initial estimate in Section V. 

Recall from (1) that 𝑥𝑥: 𝑀𝑀 → ℝ is a twice continuously differentiable function 
representing the observation of a single state variable. For many applications, the gain of 
this function is not controlled across and sometime within signals. For the heart 
arrhythmia example presented in Section V, baseline wandering, where the mean of the 
signal changes when the electrical sensor is physically disturbed, is a problem. For both 
datasets, the gain varies across signals. Thus, a mechanism is needed to compensate for a 
time varying observation function. The type of compensation will depend on the nature of 
the observation function. For example, the electrocardiogram (ECG) signals can be low pass 
filtered to remove baseline wandering and standardized in the time domain as follows: 
𝑥𝑥𝑛𝑛

′ = (𝑥𝑥𝑛𝑛 − 𝜇𝜇𝐱𝐱) 𝜎𝜎𝐱𝐱⁄ . 

The next step is to form the RPSs as specified by (2) for statistical modeling. When a 
Bayes classifier is used, the training signals are used to form RPSs for each class by 
appending in a column fashion the 𝑿𝑿's formed from the signals belonging to that class. This 
enables statistical models for each class to be learned. When the ANN classifier is used, all 
training signals are used to form a single RPS. This enables a consistent set of features to be 
extracted for training the ANN. 
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Fig. 2. Bin-based distribution modeling (100 bins). 

B. Statistical Models 

The use of histograms as an estimate of the discrete probability mass function (pmf) 
of the attractor is straightforward. The space is divided into bins and occurrence counts in 
each bin over the training examples, divided by the total number of points, provide a direct 
estimate of the posterior probability within each bin  

𝑝̂𝑝(𝑏𝑏) =
Number of example points in bin 𝑏𝑏

Total number of points
. 

(4) 
 

Given 𝐱𝐱𝑛𝑛 in bin 𝑏𝑏, the posterior probability for 𝐱𝐱𝑛𝑛 is 𝑝𝑝
^

(𝑏𝑏). 

In order to improve the reliability of the pmf estimate, it is desirable to establish a 
binning system that more accurately reflects the underlying distribution. The distribution 
of points throughout the phase space is nonuniform; therefore, nonuniformly spaced bins 
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are used. Fig. 2 illustrates the nonuniformly spaced bins. A two-step process is used to form 
the bins. First, along each dimension a set of intercepts is computed such that in that 
dimension the histogram formed by the intercepts is uniform. The outlying bins of this one-
dimensional (1-D) histogram extend to infinity. Second, the higher-dimensional bins are 
form as hypercubes whose boundaries are formed by the intercepts determined in the first 
step. In forming a RPS for a signal of reasonable length, the intercepts are approximately 
the same in each dimension. Fig. 2 illustrates, as an example, the case of a 2-D RPS with 
nine intercept values per dimension, which forms a 10 by 10 bin mass function over the 
entire space. 

Disadvantages of the bin-based system include an exponentially increasing number 
of bins as RPS dimension increases and fixed bin boundaries. Thus, a GMM, which has soft 
boundaries and does not necessarily require an exponential number of mixtures with 
respect to RPS dimension, is studied. The probability of 𝐱𝐱𝑛𝑛 is  

𝑝𝑝(𝐱𝐱𝑛𝑛) = � 𝑤𝑤𝑚𝑚𝑝𝑝𝑚𝑚(𝐱𝐱𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

= � 𝑤𝑤𝑚𝑚𝒩𝒩(𝐱𝐱𝑛𝑛; 𝝁𝝁𝑚𝑚, 𝚺𝚺𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

 

(5) 
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Fig. 3. GMM-based distribution modeling (16 mixtures). 
 
where 𝑀𝑀 is the number of mixtures, 𝒩𝒩(𝐱𝐱; 𝝁𝝁𝑚𝑚, 𝚺𝚺𝑚𝑚) is a normal distribution with mean 𝝁𝝁𝑚𝑚 
and covariance matrix 𝚺𝚺𝑚𝑚, and 𝑤𝑤𝑚𝑚 is the mixture weight. With the constraint that ∑𝑤𝑤𝑚𝑚 = 1, 
a GMM is a probability model that can accurately reflect a wide range of distributions with 
arbitrary precision given enough mixture components. 

Given training data, the parameters for the GMM can be estimated using the well-
known Expectation-Maximization (EM) algorithm.30 The number of mixtures 𝑀𝑀 is 
determined empirically, but is robust across a range of mixture components as shown in 
Section V. A visualization of a GMM is shown in Fig. 3, where the principle axes of the 
ellipses indicate the one standard deviation of each mixture in the model. 

Both the GMM and bin-based approaches require exponential increases in model 
complexity to effectively model arbitrary feature spaces as the dimensionality of such 
feature spaces is increased. Because of the structure and hard bound boundaries of the bin-
based model, it suffers from these scalability issues when applied to a RPS, because it 
models the whole space. The GMM approach is not completely immune to scalability 
problems, but it does provide two features in dealing with scalability that the bin-based 
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approach does not. First, through the use of EM, the GMM model more accurately models 
the distribution of points in the RPS, i.e., it models the attractor. An example of this is 
illustrated in Fig. 3. Second, if the number of mixtures is held constant, a GMM increases 
linearly in complexity as the RPS dimension is increased. 

C. Classifiers 

To use either the binning or GMM models for signal classification, training data from 
several different types of signals are normalized, embedded, and the selected statistical 
model is learned. We have used two classifiers: a Bayesian maximum likelihood and an 
ANN.31 

Bayes classification of a new test signal is accomplished by computing the 
conditional likelihoods of the signal under each learned model and selecting the model with 
the highest likelihood. The likelihoods are computed on a point-by-point basis from the 
learned attractor models  

𝑝𝑝( 𝐗𝐗 ∣∣ 𝑐𝑐𝑖𝑖 ) = � 𝑝𝑝( 𝐱𝐱𝑛𝑛 ∣∣ 𝑐𝑐𝑖𝑖 )
𝑁𝑁

𝑛𝑛=1
c� = arg 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
𝑝𝑝 ( 𝐗𝐗 ∣∣ 𝑐𝑐𝑖𝑖 )

 

(6) 
 
where 𝑐𝑐𝑖𝑖 is the 𝑖𝑖th class. As aforementioned, attractor models are learned for each class 
individually. Thus, for the bin-based method each class has its own set of intercepts with 
corresponding probability mass functions, while for the GMM each class has unique 
mixture means and variances with corresponding cluster weights. 

The use of ANNs as a classifier requires that a set of features be extracted from the 
learned statistical model. This is done by using all training signals to form a single RPS. This 
enables a consistent set of features to be extracted for training so that there is a common 
set of intercepts in the case of bins or a common set of mixtures in the case of GMMs. For a 
GMM, this arrangement is often referred to as a tied-mixture model. Hence, the bin-based 
system with global intercepts is referred to as a tied-bin model. The features are the GMM 
or bin weights and are calculated, respectively, for a particular signal by determining the 
weights from the global GMM or the weights for the global bins for that signal. 
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A set of ANNs is trained, one for each class, by using the bin counts or mixture 
weights as inputs. The training output is set to one when the signal belongs to that class 
and to zero when it does not. Testing is accomplished by computing the features over a 
new signal sample, and selecting the class label corresponding to the ANN with the greatest 
output. 

Section V. 

Experiments and Results 

We now present the application of the RPS-based signal classification methods to 
two different domains. The first application is to distinguishing heart arrhythmias. This 
application shows how the new approach can accurately classify heart arrhythmias with 
only a 2-s signal. The second application is speech phoneme classification. Here we give 
initial results showing that for small datasets the new approach is similar to traditional 
spectral methods. 

 
Fig. 4. Reconstructed 2-D phase space for examples of SR, MVT, PVT, and VF with 𝜏𝜏 = 11. 
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A. Heart Arrhythmia Classification 

The goal of this application is to rapidly and accurately classify four different heart 
rhythms using signals generated by lead II of an electrocardiogram (ECG).10 These rhythms 
are sinus rhythm (SR) and the three arrhythmias: monomorphic ventricular tachycardia 
(MVT), polymorphic ventricular tachycardia (PVT), and ventricular fibrillation (VF). This is 
a clinically relevant problem because different therapies are applied depending on the type 
of rhythm. No therapeutic action is taken for SR. For VF and PVT, electronic shock is the 
most prevalent therapy. In the case of VF, collapse occurs within seconds and death within 
minutes unless the VF is corrected with the passage of a large electrical current through the 
heart muscle. However, shocking SR can sometimes induce VF. 

The data for these experiments were obtained from six patients during intercardiac 
defibrillator implantation. Data was collected from lead II of a 12 lead ECG. The signals 
were antialias filtered with a cutoff frequency of 200 Hz and subsequently digitized at 1200 
Hz. The dataset includes 306 s of SR, 126 s of MVT, 116 s of PVT, and 114 s of VF. Because 
the data was collected during surgery and the chest was open, the lead placement was not 
ideal. This shows that the proposed methods are somewhat robust to variances in the exact 
state variable that is measured. Data were examined by two experts, whose classification 
initially agreed on only 80% of four-second epochs. After consultation, they concurred on 
the remaining 20%. Fig. 4 provides an example of the RPSs for the four rhythm types. 

The signals are segmented into 2 s intervals and zero meaned and unit normalized. 
The initial estimates of time lag and dimension are 11 and 9, respectively, using the method 
proposed in.12 Figs. 5 and 6, respectively, show classification accuracy versus dimension 
with lag held constant and accuracy versus time lag with dimension held constant using a 
16 mixture full covariance GMM and a Bayes classifier (GMM: Bayes). A 10-fold cross 
validation is performed for all experiments. Data segments for each fold are randomly 
selected with the constraint that the proportion of classes be the same within each. The 
experiments are thus not patient independent, in that a patients' data may appear in more 
than one fold. Classification accuracy is the total number of correctly classified signals 
divided by the total number of signals. 
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Fig. 5. ECG classification accuracy versus dimension with τ=11 for a 16 mixture GMM and Bayes 
classifier. 
 

 
Fig. 6. ECG classification accuracy versus time lag with d=9 for a 16 mixture GMM and Bayes classifier. 
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TABLE I ECG Accuracy Results for Each Method 

 
 

As can be seen in Figs. 5 and 6, the initial estimates of time lag and dimension are 
reasonable, but not optimal. Additionally, it can be seen that the GMM:Bayes method is 
relatively robust for this problem across a range of time lags from 11 to 15 and dimensions 
from 13 to 19. Using the best empirical time lag and dimension, the number of mixtures is 
varied from 1 to 64. The accuracy increases from 75.8% to 92.2% as the number of 
mixtures increases from 1 to 8. From 16 to 64 mixtures, the accuracy is relatively stable in 
the range from 94.5% to 95.5%. Table I shows the best results for the two methods, bin-
based statistical model and Bayesian classifier (bin:Bayes) and GMM:Bayes, with the 
structure of each RPS and number of mixtures/bins. The sensitivity results for the 
GMM:Bayes classifier are 100.0% for SR, 95.2% for MVT, 82.7% for PVT, and 96.5% for VF. 

Also seen in Table I are the results of two baseline techniques commonly used in 
automatic cardioverter defibrillators— a heart rate-based method and a gradient pdf-
based method—and frequency-based approach. Details of the first two methods can be 
found in32 and.33 In short, the heart rate method estimates the heart rate for each of the 
four rhythms and classifies according to heart rate bands. The gradient pdf approach builds 
models of the gradient of the ECG signal and classifies using a Bayesian approach. The 
frequency method uses the centroid frequency of the power spectrum as a feature.34 The 
best results were obtained when using a single mixture to model this feature across each 
class. A maximum likelihood classifier is used on the test signals. The GMM:Bayes method 
outperforms all other tested approaches including the bin:Bayes. The difficulty in adjusting 
the granularity of the bin:Bayes method in comparison to the GMM:Bayes method is also 
seen. The GMM:Bayes is able to successfully model a 21–dimensional space. To apply the 
bin-based method to such a space with only one division per dimension would require over 
one million bins. We also see that the initial estimates for time lag and dimension are 
reasonable, but not optimal, estimates. 
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Fig. 7. 2-D RPS for examples of normalized phonemes: /ao/, /ow/, /s/, /z/ with 𝜏𝜏 = 2. 

B. Speech Recognition 

In this set of experiments, we apply our RPS-based classification methods to 
automatic speech recognition, specifically speaker dependent isolated phoneme 
classification.35 The classification of isolated phonemes is directly related to the problem of 
continuous speech recognition, a necessary element of such important tasks as automated 
transcription and machine translation. We compare a traditional cepstral-based method to 
the RPS approaches. Examples of four speech phoneme 2-D RPS are shown in Fig. 7. The 
speech signals, which are sampled at 16 KHz, are taken from the TIMIT corpus.36 The 
speech signals in the TIMIT corpus contain expertly labeled time-stamped phoneme 
boundaries, which can be used to extract the isolated phoneme data. 

The illustrated phonemes are of two different types, vowels, /ao/ and /ow/, and 
fricatives, /s/ and /z/. The vowels have smooth locally correlated trajectories, whereas the 
fricatives contain random locally uncorrelated trajectories, as would be expected from the 
associated differences in speech production mechanisms. 
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We use a single speaker's data and implement several different RPS models. For this 
speaker, there are 417 total phoneme utterances belonging to 47 classes. One class of the 
standard 48 is not present in this data set. For each method, a model is learned for each of 
the 47 classes, yielding 47 models. These 47 classes are folded into 39 classes as is 
consistent with the literature.37 A leave-one-out cross-validation testing is used for the 
MFCC approach and bin-based statistical model combined with an ANN classifier 
(bin:ANN), while a class balanced 10-fold cross validation is used for all other experiments. 

The initial estimates of time lag and dimension are 2 and 12, respectively. In Fig. 8, 
we can see that these initial estimates are reasonable, but not optimal. We can also see that 
the method's accuracy is stable across the range of dimensions from 10 to 18 for the 
GMM:Bayes method. The best results for each approach are given in Table II. 

 
Fig. 8. GMM:Bayes phoneme classification accuracy versus dimension with 𝜏𝜏 = 2 for a 16 mixtures. 
 
TABLE II Speaker Dependent Classification Results 
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The baseline Mel-frequency cepstral coefficients (MFCC) approach uses eight 
mixtures to model the distribution of 12 MFCCs for each phoneme. This is compared to 
three RPS-based methods. The bin:Bayes method has the lowest accuracy of 24.0%. The 
bin:ANN with a tied-bin statistical model with 400 (20×20) bins in combination with an 
ANN classifier outperforms the bin:Bayes approach. The ANN uses bin counts as inputs to 
an ANN with a 400-10-3-1 (400 input neurons, 10 sigmoid neurons in the first hidden 
layer, three sigmoid neurons in the second hidden layer, and one linear output neuron) 
architecture. Two versions of the GMM:Bayes approach are shown. The first is directly 
comparable to the MFCC result. The second uses a larger dimension and number of 
mixtures to achieve an accuracy of 62.6%. The sensitivity results for this GMM:Bayes 
classifier are: vowels 61.8%, fricatives 71.9%, nasals 57.1%, semivowels 40.0%, stops 
46.3%, and silence 82.5%. 

The results indicate that RPS methods are capable of discriminating between 
phonemes. From the results of the last experiment, we can see that for this speaker 
dependent task, a GMM:Bayes approach outperforms the MFCC approach. In contrast to the 
ECG classification, where the best RPS approach outperforms the best traditional approach 
by 24.5%, only the GMM:Bayes approach outperforms the MFCC approach and by only 
11%. These results give an indication of how well RPS approaches will perform on tasks 
that are well characterized by linear models such as speech production. 

Section VI. 

Conclusion 

We have presented the use of RPS representations as a novel and theoretically well 
founded method for signal classification, and shown that statistical models of the RPSs are 
viable for capturing the information in such a space. The approach is applied to two signal 
classification tasks. 

A key advantage of such phase space signal models is that this representation is 
capable of capturing the full dynamic structure of any finite-dimensional generating 
system. In the limit as the amount of data and corresponding model dimension increases, 
the attractor structure can fully describe complex behaviors of a system of arbitrarily large 
order. Another advantage of this approach is its ability to distinguish signals of very short 
duration, where the frequency resolution needed for accurate classification is unattainable. 
This is useful in applications such as heart arrhythmia classification, where such rapid 
classification enables previously inconceivable therapy options. 
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It is important to note the types of signal classification problems for which RPS-
based methods will not work better than power spectral-based methods. Assuming the 
chosen modeling approach is of high enough order; power spectral-based methods will 
outperform RPS-based methods when the phase of the signal is not important for 
differentiating between classes, as would be the case for a linear system. This can be seen 
in the phoneme recognition task discussed above, as there is an ongoing debate as to how 
important phase is in speech recognition.38 Additionally, RPS-based methods would 
underperform methods based on a single state variable when the state structure captured 
by the RPS fails to provide additional signal class differentiating information. 
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