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Abstract: This paper introduces a novel time-domain approach to modeling and classifying speech 
phoneme waveforms. The approach is based on statistical models of reconstructed phase spaces, which 
offer significant theoretical benefits as representations that are known to be topologically equivalent to 
the state dynamics of the underlying production system. The lag and dimension parameters of the 
reconstruction process for speech are examined in detail, comparing common estimation heuristics for 
these parameters with corresponding maximum likelihood recognition accuracy over the TIMIT data 
set. Overall accuracies are compared with a Mel-frequency cepstral baseline system across five different 
phonetic classes within TIMIT, and a composite classifier using both cepstral and phase space features is 
developed. Results indicate that although the accuracy of the phase space approach by itself is still 
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currently below that of baseline cepstral methods, a combined approach is capable of increasing speaker 
independent phoneme accuracy. 
 

SECTION I. 

Introduction 

Current state-of-the-art speech recognition systems use frequency-domain features, 
such as Mel-frequency cepstral coefficients (MFCCs), which are based upon a switched 
linear model of the human speech production mechanism. This familiar model is a 
reasonable, albeit somewhat rough, approximation of the true physiological process, and 
has led to successful coding, synthesis, and recognition algorithms for many years. 

One limitation of this frequency-domain approach is the inability of such a 
representation to capture the nonlinear and higher-order characteristics of the speech 
production process. Research in this area has suggested that there is evidence of nonlinear 
behavior in both voiced and unvoiced excitation patterns, and that such nonlinearity is not 
insignificant.1–2,3 To capture this nonlinear information, a number of other analytical 
methods have been investigated as an alternative to traditional linear approaches, 
including the use of time-frequency and time-scale transforms, higher-order statistics, and 
dynamical systems and chaos theory. 

The basis for the dynamical systems approach, which is the focus of the work 
presented here, lies in theorems showing that by embedding a signal into a sufficiently high 
dimensional space, a structure is formed that is topologically equivalent to the original 
phase space, i.e., state space, of the system generating the signal. This embedding, called a 
reconstructed phase space (RPS), is typically constructed by mapping time-lagged copies of 
the original signal onto axes of the new high dimensional space. The time evolution of the 
signal within the RPS traces out a trajectory pattern referred to as its attractor, a term 
adopted (somewhat loosely) from dynamical systems theory, which is a representation of 
the dynamics of the underlying system. Each point in the space, as a vector of time-lagged 
signal points, captures short-time dynamics, and the overall attractor structure is a full 
representation of those dynamics. Since the attractor of an RPS captures all information 
about the underlying system, it is an appealing choice for signal analysis, processing, and 
classification. There has been some other work in time-domain representations of speech 
signals, such as through autoregressive modeling,4 but the RPS approach introduced here 
has the advantage of capturing both linear and nonlinear aspects of the underlying system. 
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The use of RPSs is well known within the dynamical systems field, and measures 
taken from that field have been utilized in a number of application areas, including the 
tasks of speech synthesis and recognition. Examples include the use of dynamical 
invariants such as Lyapunov exponents and fractal dimensions5–6,7,8,9,10 as features for 
recognition, as well as work in functional modeling of attractors using orthogonal 
polynomial bases.11,12 Our prior work in the area of attractor modeling has focused on 
using statistical representations for Bayesian signal classification, with applications to 
heart arrhythmia identification13,14 and motor diagnostics,15 as well as the speech 
representation and recognition tasks16–17,18,19,20,21,22,23 presented here. Advantages of such 
an approach over those based on invariant metric features include that it captures more 
aspects of the attractor and that it generalizes well to arbitrary systems, regardless of the 
degree of nonlinearity present. 

The goal of the work presented here is to directly model reconstructed phase spaces 
for application to speech recognition. The current effort focuses on isolated phoneme 
recognition, with the goal of identifying its capability for capturing phonetic differences in a 
speaker independent environment. 

Section II gives a detailed overview of the dynamical systems theory and 
terminology and examines attractor patterns for different phoneme classes. Section III 
introduces the statistical model used to capture these patterns, as well as the frequency 
domain baseline model. Issues of lag and dimension are discussed in Section IV, followed 
by supporting experimental results and discussion in Section V. Accuracy as a function of 
phoneme class is examined in Sections VI and VII discusses results of the composite 
RPS/MFCC classifier. We conclude in Section VIII with a discussion of the initial success of 
this new approach and of its potential for more complex speech recognition tasks. 

SECTION II. 

Basis in Dynamical Systems Theory 

As introduced above, the underlying principle of this work lies in the idea that the 
state space of a system can be reconstructed through an embedding of a single state 
variable or observation sequence from that system. We denote a time series as 𝑥𝑥𝑛𝑛, with a 
time delay RPS of dimension 𝑑𝑑 and time lag 𝜏𝜏 defined by the trajectory matrix 
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𝐱𝐱 = �

𝐱𝐱1+(𝑑𝑑−1)𝜏𝜏
𝐱𝐱2+(𝑑𝑑−1)𝜏𝜏

⋮
𝐱𝐱𝑁𝑁

�

= �

𝑥𝑥1+(𝑑𝑑−1)𝜏𝜏 ⋯ 𝑥𝑥1+𝜏𝜏 𝑥𝑥1
𝑥𝑥2+(𝑑𝑑−1)𝜏𝜏 ⋯ 𝑥𝑥2+𝜏𝜏 𝑥𝑥2

⋮ ⋱
𝑥𝑥𝑁𝑁 ⋯ 𝑥𝑥𝑁𝑁−(𝑑𝑑−2)𝜏𝜏 𝑥𝑥𝑁𝑁−(𝑑𝑑−1)𝜏𝜏

�

 

(1) 
 
where each row vector in the matrix represents a single point in the space 
 

𝐱𝐱𝑛𝑛 = �𝑥𝑥𝑛𝑛𝑥𝑥𝑛𝑛−𝜏𝜏 ⋯𝑥𝑥𝑛𝑛−(𝑑𝑑−1)𝜏𝜏�,
𝑛𝑛 = (1 + (𝑑𝑑 − 1)𝜏𝜏)⋯𝑁𝑁.

 

(2) 

Each point in the space captures local short-time signal dynamics, and together the 
entire RPS is a representation of the dynamics of the underlying system. The concept of 
time delay embedding was first introduced by Packard,24 based on early theorems by 
Whitney25 relating to topological embeddings in Cartesian spaces. Working from this idea, 
Takens26 proved that delay coordinate maps of dimension greater than twice that of the 
original system are embeddings, providing an important theoretical justification for the 
practical use of time delay reconstructions. Sauer, Yorke, and Casdagli27 have extended 
Takens' work, establishing that, except for a set of degenerate cases with measure zero, the 
topological equivalence property is guaranteed for time-lag reconstructed phase spaces. In 
addition, they tightened the bound on the required dimension to 𝑑𝑑 > 2𝑑𝑑0, where 𝑑𝑑0 is the 
boxcounting dimension of the attractor of the underlying system. Together, the above 
theorems guarantee that for almost every time delay embedding, the reconstructed 
dynamics of the map, including dynamical invariants such as fractal dimensions and 
Lyapunov exponents, are topologically identical to the true dynamics of the system. 

The concept of dimension 𝑑𝑑 and lag 𝜏𝜏 play a significant role in both the theoretical 
and practical aspects of working with reconstructed phase spaces. The topological 
equivalence property of the space is only guaranteed for 𝑑𝑑 > 2𝑑𝑑0; however, this is a 
sufficient condition not a necessary one, so that often dimensions of much less than 2𝑑𝑑0 are 
enough to fully represent the structure of the attractor. To identify the minimum possible 
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dimension, heuristic procedures such as false nearest neighbor thresholds [28] are 
typically used. The time lag τ has little impact from a theoretical viewpoint, and in fact 
there are no limitations or assumptions placed upon it with respect to the underlying time-
lag reconstruction theorems for discrete-time signals.27 However, since topological 
invariance of systems does not equate to identical phase spaces or attractors, from a 
practical viewpoint the lag must be selected with respect to some relevant criteria. Both 
dimension and lag, including methods for selecting them as well as their impact on 
classification accuracy in the speech task, will be discussed in more detail in Section 4. 

Many types of signals and systems can be characterized through phase space 
analysis, including linear, nonlinear, chaotic, and stochastic systems. Linear systems have a 
fixed point or periodic attractor structure, while nonlinear systems may be aperiodic with 
complex attractor structure. Attractors of chaotic systems (a subset of general nonlinear 
systems) have several unusual characteristics such as snap back repellers, sensitivity to 
initial conditions, positive Lyapunov exponents, and topological transitivity. Additive noise 
processes add a random component to each point in the underlying phase space, obscuring 
the attractor and increasing the required dimension for adequate representation. 

Examples of reconstructed phase spaces with dimension 3 and lag 6, taken from the 
TIMIT data set29,30 for five different phonetic classes are shown in Fig. 1. The classes 
include vowels, semi-vowels, stops, nasals, and fricatives. The plots demonstrate that 
vowels, as quasiperiodic waveforms, exhibit the most distinct structure, with semi-vowels, 
and nasals having similar but less defined characteristics. Fricatives, generated by 
turbulent air flow, exhibit much less structure (and would be expected to require higher 
dimensions for adequate modeling), while stops and affricates have a defined nonperiodic 
structure. 
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Fig. 1. Examples of reconstructed phase spaces. (a) VOWEL /𝑜𝑜𝑜𝑜/, (b) FRICATIVE /𝑓𝑓/, (c) STOP /𝑡𝑡/, (d) 
SEMIVOWEL /𝑟𝑟/, and (e) NASAL /𝑛𝑛𝑛𝑛/. 
 
SECTION III. 

Phoneme Attractor Model 

Isolated phoneme waveforms are embedded into RPSs using a pre-specified 
dimension 𝑑𝑑 and lag 𝜏𝜏. To address amplitude variation across phoneme instances, the 
reconstructed phase spaces are amplitude normalized. This is done through a radial 
normalization given by 

𝐱𝐱𝑛𝑛 =
𝐱𝐱𝑛𝑛 − 𝝁𝝁𝐱𝐱
𝜎𝜎𝑟𝑟

 

(3) 
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where  
 

𝜎𝜎𝑟𝑟 ≜ �
1

𝑁𝑁 − (𝑑𝑑 − 1)𝜏𝜏
� ∥ 𝐱𝐱𝑁𝑁 − 𝝁𝝁𝐱𝐱 ∥22
𝑁𝑁

𝑛𝑛=1+(𝑑𝑑−1)𝑟𝑟

. 

(4) 

A 𝑑𝑑-dimensional Gaussian mixture model (GMM) probability distribution is estimated over 
the RPS X for each phoneme class 

𝑝𝑝
^

(𝐱𝐱𝑛𝑛) = � 𝑜𝑜𝑚𝑚𝑝𝑝
^
𝑚𝑚(𝐱𝐱𝑛𝑛)

𝑀𝑀

𝑚𝑚=1

= � 𝑜𝑜𝑚𝑚𝒩𝒩(𝐱𝐱𝑛𝑛;𝝁𝝁𝑚𝑚,𝚺𝚺𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

 

(5) 
 
where 𝑀𝑀 is the number of mixtures, 𝑜𝑜𝑚𝑚 is a mixture weight and 𝒩𝒩(𝐱𝐱𝑛𝑛;𝝁𝝁𝑚𝑚,𝚺𝚺𝑚𝑚) is a 
Gaussian distribution over 𝐱𝐱𝑛𝑛 with mean 𝝁𝝁𝑚𝑚 and covariance matrix 𝚺𝚺𝐦𝐦. These parameters 
are learned using the Baum Welch algorithm, beginning with a single mixture and 
increasing using a binary split permutation across all mixtures after each parameter 
estimation, until the desired number of mixtures is reached. Maximum likelihood (ML) 
classification is accomplished via 
 

𝑐𝑐
^

= arg 𝑚𝑚𝑚𝑚𝑥𝑥
𝑖𝑖=1…𝐶𝐶

�𝑝𝑝
^
𝑖𝑖(𝐗𝐗)� = arg 𝑚𝑚𝑚𝑚𝑥𝑥

𝑖𝑖=1…𝐶𝐶
�� log 𝑝𝑝

^
𝑖𝑖(𝐱𝐱𝑛𝑛)

𝑁𝑁

𝑛𝑛=1

�
 

(6) 
 
where 𝐶𝐶 is the number of phonemes. In summary, the training process consists of learning 
a GMM across all the trajectory matrices data for a given phoneme, and testing consists of 
computing a point-by-point likelihood from those GMMs for each phoneme. The features 
being modeled are the time-lagged observation vectors from the original time domain 
signal. The statistical distribution of these observation vectors captures the attractor 
geometry and short-term signal dynamics, including spectral characteristics as well as 
nonlinear system characteristics. Long-term dynamics due to nonstationarity must be 
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captured in other ways, such as through state sequences in a Hidden Markov model or 
through global trajectory models31–32,33 just as with spectral features. 

The baseline method selected for comparison uses a 39-element feature vector, 
comprised of 12 mel-frequency cepstral coefficients (MFCCs) plus energy, augmented with 
delta and delta-delta (first- and second-order linear regression) coefficients. Frequency 
domain processing is done with the HTK toolkit,34 using a pre-emphasis filter with 
frequency response of 𝐻𝐻(𝑧𝑧) = 1/(1 − 0.97𝑧𝑧−1), a 25 ms hamming window and 10 ms step 
size, and a 24-band triangular mel-frequency filter bank with discrete cosine 
transformation to 12 MFCCs. 

GMM implementation for both the RPS and cepstral approaches is done through a 1-
state Hidden Markov Model in HTK, with a 16-mixture state distribution for the cepstral 
coefficients and a 128-mixture state distribution for the RPS features. 

Note that since the MFCC features are frame based and the RPS features are sample 
point based, there are substantially more observations available for training in the RPS 
case, by a multiplicative factor equal to 𝐿𝐿, the frame step size. With 16 kHz signals, the 10 
ms step size used here corresponds to a factor of 𝐿𝐿 = 160. The change in observation rate 
also affects computation time by approximately the same linear factor. 

The data set used for these experiments is TIMIT,29,30 a speaker independent corpus 
that contains expertly-labeled phonetic boundary information. The original 64 phoneme 
TIMIT set is reduced to a 48 phoneme set for building models, and results are folded to 
create a 39-phoneme confusion matrix, using the approach given in.35 For within-class 
recognition experiments, the five phonetic classes are given by  

Vowels {tt ih ix}{tt ax ah}{tt ao aa}
     tt iy eh ey ae aw ay ox ow uh uw er
Semivowels {tt el l} tt r w y hh
Stops tt b d g p t k dx
Nasals {tt n en} tt m ng
Fricatives {tt sh zh} tt jh ch s z f th v dh.
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Brackets indicate those models that are trained separately and then folded for 
generating accuracy results. The silence models {tt cl vcl epi sil} were not used for the 
within-class recognition experiments, but are included in overall accuracy numbers. 

SECTION IV. 

Analysis of Lag and Dimension in Phoneme Attractors 

As mentioned previously, the dimension 𝑑𝑑 and lag 𝜏𝜏, the fundamental parameters of 
a time delay RPS, are both important and difficult to determine exactly. The dimension is 
perhaps of greater significance, since a sufficient dimension is a theoretical requirement for 
valid modeling, but lag has also been shown to have significant impact, altering the 
structure of the resulting RPS attractor as well as in some cases affecting the required 
dimension.36,37 Methods for estimating dimension and lag are typically heuristic and 
sensitive to algorithm parameters, and in addition the criteria on which they are based may 
not be entirely generalizable to the larger goal of maximizing classification accuracy. In this 
section, we review the most common approaches for identifying dimension and lag, apply 
them across the TIMIT corpus and generate histograms of the results as a function of 
phonetic class. The results of these experiments are then compared with recognition 
accuracy results as a function of dimension and lag, with the goals of examining the impact 
of these parameters on accuracy and identifying whether heuristically determined values 
for them are adequate. 

At low dimensions, there are many points along an RPS trajectory that are near each 
other due to projection rather than dynamics. As the dimension is increased these points, 
called false neighbors, “unfold” from each other into distinct neighborhoods. Once the 
dimension is high enough so that the attractor structure is fully unfolded, there is no 
benefit to any further increase, as the dimension of the attractor will be unchanged even if 
the dimension of the embedding space is increased. Heuristic procedures such as the false 
nearest neighbor method28 take advantage of this concept to estimate the lowest 
dimension in which there are no false nearest neighbors. The implementation used here is 
taken from Abarbanel et al.38,39 We denote 𝐱𝐱𝑛𝑛(𝑑𝑑) as a point in an RPS of dimension 𝑑𝑑 and 
lag 𝜏𝜏, and define 𝐱𝐱𝑛𝑛𝑁𝑁𝑁𝑁(𝑑𝑑) as its nearest neighbor, the nearest point to 𝐱𝐱𝑛𝑛(𝑑𝑑) with respect to 
Euclidean distance. The squared distance between these two points is 
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𝐷𝐷𝑛𝑛(𝑑𝑑)2 =∥ 𝐱𝐱𝑛𝑛(𝑑𝑑) − 𝐱𝐱𝑛𝑛𝑁𝑁𝑁𝑁(𝑑𝑑) ∥2

= �[𝑥𝑥𝑛𝑛−𝑖𝑖𝜏𝜏(𝑑𝑑) − 𝑥𝑥𝑛𝑛−𝑖𝑖𝜏𝜏𝑁𝑁𝑁𝑁 (𝑑𝑑)]2
𝑑𝑑−1

𝑖𝑖=0

.
 

(7) 

The difference in squared distance between dimension 𝑑𝑑 and 𝑑𝑑 + 1, which indicates 
how far the two neighboring points have moved from each other, is then 

𝐷𝐷𝑛𝑛(𝑑𝑑 + 1)2 − 𝐷𝐷𝑛𝑛(𝑑𝑑)2 = ��𝑥𝑥𝑛𝑛−𝑖𝑖𝜏𝜏(𝑑𝑑) − 𝑥𝑥𝑛𝑛−𝑖𝑖𝜏𝜏𝑁𝑁𝑁𝑁 (𝑑𝑑)�2
𝑑𝑑

𝑖𝑖=0

−��𝑥𝑥𝑛𝑛−𝑖𝑖𝜏𝜏(𝑑𝑑) − 𝑥𝑥𝑛𝑛−𝑖𝑖𝜏𝜏𝑁𝑁𝑁𝑁 (𝑑𝑑)�2
𝑑𝑑−1

𝑖𝑖=0
= [𝑥𝑥𝑛𝑛−𝑑𝑑𝜏𝜏(𝑑𝑑) − 𝑥𝑥𝑛𝑛−𝑑𝑑𝜏𝜏𝑁𝑁𝑁𝑁 (𝑑𝑑)]2.

 

(8) 

Normalizing the square root of this difference with respect to the original distance 
at the lower dimension results in a ratio of how far apart two originally close points have 
moved, which can be compared to a threshold to identify a “false neighbor” 

�𝑥𝑥𝑛𝑛−𝑑𝑑𝜏𝜏(𝑑𝑑) − 𝑥𝑥𝑛𝑛−𝑑𝑑𝜏𝜏𝑁𝑁𝑁𝑁 (𝑑𝑑)�
𝐷𝐷𝑛𝑛(𝑑𝑑) > Threshold ≜ 𝑟𝑟𝑇𝑇  

(9) 
 
and the percentage of false nearest neighbors is 
 

�
1

𝑁𝑁 − (𝑑𝑑 − 1)𝜏𝜏
�

× � sgn
𝑁𝑁

𝑛𝑛=1+(𝑑𝑑−1)𝜏𝜏

�
�𝑥𝑥𝑛𝑛−𝑑𝑑𝜏𝜏(𝑑𝑑) − 𝑥𝑥𝑛𝑛−𝑑𝑑𝜏𝜏𝑁𝑁𝑁𝑁 (𝑑𝑑)�

𝐷𝐷𝑛𝑛(𝑑𝑑) − 𝑟𝑟𝑇𝑇� (10)
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where 𝑠𝑠𝑛𝑛𝑛𝑛(⋅) is the sign function. The percentage of false nearest neighbors can then be 
compared to a second threshold on the order of 0.001–0.01 to select an appropriate 
dimension. Each of these two thresholds can have significant effect on the results of the 
algorithm. 

There are several common techniques used for identifying the preferred time lag for 
an RPS, including using the first minimum of the auto-mutual information function or the 
first zero-crossing of the auto-correlation function.28 Each of these functions can be poorly 
behaved, especially on noisy signals, occasionally giving artificially low or absurdly high 
values. The automutual information approach is used here, as it is slightly more common in 
practice. To implement this, a two-dimensional (2-D) histogram of {𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛−𝜏𝜏} is used to 
calculate the auto-mutual information function 

𝐼𝐼(𝜏𝜏) = �𝑝𝑝𝑖𝑖𝑖𝑖(𝜏𝜏)ln
𝑖𝑖,𝑖𝑖

 
𝑝𝑝𝑖𝑖𝑖𝑖(𝜏𝜏)

𝑝𝑝𝑖𝑖(𝜏𝜏)𝑝𝑝𝑖𝑖(𝜏𝜏) 

(11) 
 
where 𝑖𝑖 and 𝑗𝑗 are the histogram bin indices. The first local minimum of the function 𝐼𝐼(𝜏𝜏) is 
taken as the desired lag. This process essentially finds the lag giving the least overlap of 
information between axes in a 2-D phase space. 

Since the automutual information function is independent of RPS dimension, 
whereas the false nearest neighbor method requires a lag selection for embedding, the 
automutual information method is implemented first, and the results are used to set the 
reconstruction lag for the false nearest neighbor technique. 
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Fig. 2. Histograms of first minimum of automutual information. 
 

 
Fig. 3. Histograms of false nearest neighbor threshold crossings. 

Histograms of the lag determined by the first minimum of the automutual 
information function across phonemes within TIMIT are shown in Fig. 2. The overall height 
of the bar chart represents the distribution of lags across the entire TIMIT set, while the 
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individual stacked elements within each bar indicate the breakdown across phoneme 
classes. There are several immediately apparent observations regarding these results, 
including that the distribution is quite spread out, ranging from one up to 20 or more. In 
addition, the breakdown of the distribution is inconsistent across the classes, indicating for 
example that using this criteria the selected lag for fricatives would be one whereas that for 
nasals would be nine. 

Overall, the distribution outlined by these histograms suggests that the best lag is 
probably five or six based on this criterion, with six representing the peak value by a small 
margin. Using a lag of six as the baseline, the dimension is varied and histograms of the 
minimum dimension as determined by the false nearest neighbor algorithm outlined 
above, with 𝑟𝑟𝑇𝑇 = 15, are plotted across phonemes within TIMIT. The resulting false nearest 
neighbor histograms are shown in Fig. 3. Again, the overall height of the chart represents 
the distribution of chosen dimensions across the entire TIMIT set, while the individual 
stacked elements within each bar indicate the breakdown across phoneme classes. 

The results shown here initially seem more consistent than those used for 
determining lag, indicating an optimal dimension of five across all phonetic classes. This is 
somewhat surprising, since expectations would be that the chosen dimension for periodic 
signals such as vowels should be much lower than that for sounds such as fricatives. In 
addition, since the thresholds used in the method place a significant bias on the results, it is 
of interest to measure the impact of this factor as well. To  

 
Fig. 4. Histograms of false nearest neighbor thresholds 15 and 2.5. 
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Fig. 5. TIMIT accuracy versus dimension, at lag 6. 
 
visualize this latter effect, in Fig. 4 we compare the overall false nearest neighbor histogram 
from Fig. 3 with a second histogram computed using a different threshold, 𝑟𝑟𝑇𝑇 = 15, on the 
false nearest neighbor distance ratio of (9). The resulting effect is to shift the histogram 
significantly to the right, indicating a much higher dimension than in the first case. 

There is thus no clear interpretation regarding the best dimension to use. As a 
threshold of 15 is considered to be a standard value and as this value generally gives stable 
results in the range 10 < 𝑟𝑟𝑇𝑇 < 50,39 we will use the results of the first plot of Fig. 4, which 
suggests that the benefits of continuing to increase dimension seem to drop off after a 
dimension of about 5. This indicates that a baseline choice using the standard tools might 
be a dimension of 5 and lag of 6. 

SECTION V. 

TIMIT Accuracy Results Across Lag and Dimension 

To examine how well the automutual information and false nearest neighbor 
heuristics correlate with respect to the underlying classification task, the GMM RPS 
classifier described in Section 6 is tested across a wide range of lags and dimensions. 
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In the first set of classification experiments the lag is held constant at 6 and the dimension 
is varied. Resulting accuracies across the TIMIT corpus are shown in Fig. 5. 

The accuracy shown in Fig. 5 starts to asymptote around a dimension of 6, but 
continues increasing slowly until a dimension of about 11, at which time it plateaus and 
appears to begin a very gradual drop. The asymptote of 6 is consistent with the dimension 
chosen according to the false nearest neighbor method with a threshold of 15. 

 
Fig. 6. TIMIT accuracy versus lag, at dimension 11. 
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Fig. 7. TIMIT accuracy versus both lag and dimension. 

Using this peak dimension, the dimension is held constant and the classification task 
is implemented with lag varying across a range of 1 to 10. Results are shown in Fig. 6. 

While the dimension at which accuracy begins to asymptote follows roughly with 
the heuristic expectations, this is less the case with respect to time lag identification. It can 
be seen that the accuracy is highest for a lag of 1, with a decline followed by a second lower 
peak value at about lag 5, near the lag 6 value chosen according to the automutual 
information criteria. It is interesting to note though, that the shape of the accuracy curve of 
Fig. 6 and the automutual information histogram of Fig. 2 are both of a bimodal character, 
with peaks at lags of 1 and 6 in the automutual histograms and peaks of 1 and 5 for 
classification accuracy. 

Overall results shown as a function of both lag and dimension, across lags 1, 3, 6 and 
9 and dimensions 9, 11, 13, and 15, are given in Fig. 7. The overall accuracy of the system, 
using a lag of 1 and a dimension of 11, is 35.06%. In comparison, the baseline classification 
system, using a 39-element observation vector and a 16-mixture GMM, is 54.86%, 
indicating that the RPS method is still significantly behind the standard spectral approach. 

Based on these studies, we see that the accuracy curves are smooth and relatively 
monotonic with respect to both lag and dimension, indicating that small adjustments in 
these parameters should be expected to lead to small changes in results, a conclusion 
which, although expected for linear system models, is not at all guaranteed for nonlinear 
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models such as these. This is an important characteristic for the RPS method, as it has 
already been seen that determination of lag and dimension is generally not exact and it is 
essential from a practical perspective that the approach be robust with respect to these 
parameters. 

SECTION VI. 

Variability Analysis and Accuracy by Phoneme Class 

Dynamical systems theory shows that given sufficient dimension the RPS of a signal 
is a complete representation of the underlying system, including both spectral and higher-
order characteristics. This does not, however, guarantee that the differences in attractor 
structure between phonemes, as captured by our statistical RPS models, are proportional 
to perceptual differences or will lead to optimal classification accuracy. Intraclass and 
interclass variability among attractors is a function of a number of factors, including not 
only lag and dimension as already discussed, but also parameters such as fundamental 
frequency (which affects RPS structure more than it affects cepstral features) and speaker 
differences, which have not been previously analyzed for this type of time-domain 
representation. 

The affect of fundamental frequency on attractor structure19 has been examined by 
using a variable-lag rather than fixed-lag RPS representation, where the lag was adjusted in 
proportion to the ratio of each phoneme exemplar's 𝑓𝑓0 to the mean 𝑓𝑓0 over the entire 
training set. This process essentially normalizes the periodicity of each attractor. Applied to 
classification of TIMIT vowels, the result was a small increase in accuracy, suggesting that 
while there is some variability due to 𝑓𝑓0, the effect is not large. 

The variability of attractor structure across speakers has been examined 
previously,19 by comparing classification accuracy as a function of the number of speakers 
in a speaker-dependent task. The results showed that while accuracy is higher for the 
single-speaker case, it asymptotes relatively quickly and does not continue to degrade as 
larger numbers of speakers continue to be included. This result, combined with the overall 
accuracy results discussed in the previous section, demonstrates that the basic attractor 
structure for each phoneme class is consistent. 

To investigate the relationships between perceptual and phonetic-acoustic 
differences and attractor structure, the class confusion matrices from the above 
classification experiments can be studied. The confusion matrices (available in40) indicate 
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that the vast majority of errors are between phonetically similar classes, with number of 
errors correlated with degree of phonetic similarity. The accuracy within each phoneme 
class is given in Fig. 8 as a function of dimension and in Fig. 9 as a function of lag. It can be 
seen that each class has a relatively flat accuracy curve, as was the case for the overall data 
set as well.  

 
Fig. 8. TIMIT accuracy versus dimension at lag 1, by phoneme class. 
 

 
Fig. 9. TIMIT accuracy versus lag at dimension 11, by phoneme class. 
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TABLE I Comparative Accuracy, by Phoneme Class 

 
 

 
Fig. 10. TIMIT accuracy versus stream weight factor r. 

 
The one exception is that accuracy of the fricative class is significantly affected by 

the selected time lag, whereas accuracy for the other classes changes only minimally. At lag 
1, semivowels and glides have the highest within-class accuracy, followed by fricatives, 
stops, nasals, and vowels, respectively. 

The results of comparisons to the MFCC based models are shown in Table I. 
Phoneme accuracies in percent are given for both the RPS and the MFCC models. The 
traditional frequency domain approach outperforms the time-domain RPS model across all 
of the phoneme classes, although to varying degrees. Relative to the baseline values, the 
RPS method performs the best on the affricates and fricatives class, and performs the worst 
on nasals and vowels. 
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SECTION VII. 

Composite RPS/MFCC Classifier 

An analysis of the error patterns between the RPS classifier and the MFCC classifier 
indicated that many of the errors were disjoint, suggesting the possibility that the two 
methods could be combined to increase overall accuracy. A composite system [40] was 
built using the stream weight mechanism in HTK, with the time-rate mismatch between 
RPS points and cepstral coefficients handled by replicating the cepstral coefficients from 
each analysis frame for each sample. The overall likelihood score for a phoneme is then 
given by 

𝑐𝑐
^

= arg 𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖=1…𝐶𝐶 ��((1− 𝜌𝜌)log 𝑝𝑝
^
RPS,𝑖𝑖(𝐱𝐱𝑛𝑛)

𝑁𝑁

𝑛𝑛=1

+𝜌𝜌log 𝑝𝑝
^
MFCC,𝑖𝑖(𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝑛𝑛))�

 

(12) 
 

where 1 − 𝜌𝜌 and 𝜌𝜌 are the stream weights and 𝑝𝑝
^
RPS and 𝑝𝑝

^
MFCC are the GMM distributions 

for the RPS and the MFCC features, respectively. The RPS parameters for the composite 
system are a time-lag and dimension of 𝜏𝜏 = 6, 𝑑𝑑 = 10, where the first five dimensions are 
time-delay reconstructions and the next five are delta coefficients.40 

Resulting accuracy as a function of the stream weight factor 𝜌𝜌 is given in Fig. 10. Peak 
accuracy is 57.85%, an improvement of about 3% absolute error compared to the baseline 
system's 54.86% accuracy. Confidence interval analysis of these results indicates statistical 
significance level of above 0.999. The exact value of the maximizing stream weight factor 
should not be interpreted as indicative of relative feature strength in combination, since 
the differing distribution characteristics and the time-rate differentials have substantial 
impact on the optimal parameter value. 
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SECTION VIII. 

Discussion and Continuing Work 

A new approach to speech representation and classification has been introduced, 
based on statistical models of phase spaces reconstructed from the time domain waveform. 
Investigation of the impact of RPS dimension and lag values indicates that representation 
capability as measured by recognition accuracy is relatively robust with respect to 
variation of those parameters, given a minimum dimension value of at least 5 or 6. Overall 
results indicate that statistical RPS models are able to differentiate isolated phonemes in a 
speaker independent task, and to increase classification accuracy when used in 
combination with frequency domain features. From a representation perspective, an RPS is 
able to capture aspects of the underlying speech production system that cannot be fully 
captured by spectral information, and the results presented here support further 
investigation of potential features and models stemming from this avenue of research. 
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