253 research outputs found
Fe isotopes revealing mineral-specific redox cycling in sediments
Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and cause a diffusive flux of dissolved Fe2+ towards the sediment-water interface. The partitioning of sedimentary Fe has traditionally been studied by applying sequential extractions. We modified an existing leaching method [1] in order to enable δ56Fe measurements on specific Fe mineral fractions. Those are siderite/sorbed Fe, ferrihydrite/lepidocrocite, goethite/hematite, and magnetite. The selectivity of extractions was tested by leaching pairs of 58Fe-spiked and unspiked synthetic minerals. Insignificant amounts of goethite and hematite are dissolved in hydroxylamine-HCl targetting ferrihydrite/lepidocrocite. The determination of reducible oxides leached by dithionite was found to be slightly compromised in presence of magnetite.
Removal of extraction matrix was achieved by repetitive oxidation, heating, Fe precipitation, and column separation. The new method was applied to a short sediment core from the North Sea. Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe oxides to redox cycling. Acetic acid soluble Fe and ferrihydrite/lepidocrocite-Fe showed increasing δ56Fe values with depth in accordance with progressive dissimilatory iron reduction (DIR). Low δ56Fe in acetic acid soluble Fe relative to ferric hydrous oxide-Fe is consistent with the fractionation pattern between sorbed Fe(II) and ferric substrate during DIR experiments [2]. Goethite/hematite-and magnetite-Fe do not show δ56Fe trends with depth. The results demonstrate the importance of δ56Fe analysis on individual Fe fractions that differ in origin and reactivity. The developed procedure provides a basis for specific Fe isotope studies in past and present environments that undergo or underwent redox changes.
[1] Poulton and Canfield (2005), Chemical Geology 214, 209-221.
[2] Crosby et al., Geobiology 5 (2007), 169-189
Redox State of the Neoarchean Earth Environment
A Titan-like organic haze has been hypothesized for Earth's atmosphere prior to widespread surface oxygenation approx.2.45 billion years ago (Ga). We present a high-resolution record of quadruple sulfur isotopes, carbon isotopes, and Fe speciation from the approx.2.65-2.5 Ga Ghaap Group, South Africa, which suggest a linkage between organic haze and the biogeochemical cycling of carbon, sulfur, oxygen, and iron on the Archean Earth. These sediments provide evidence for oxygen production in microbial mats and localized oxygenation of surface waters. However, this oxygen production occurred under a reduced atmosphere which existed in multiple distinct redox states that correlate to changes in carbon and sulfur isotopes. The data are corroborated by photochemical model results that suggest bi-stable transitions between organic haze and haze-free atmospheric conditions in the Archean. These geochemical correlations also extend to other datasets, indicating that variations in the character of anomalous sulfur fractionation could provide insight into the role of carbon-bearing species in the reducing Archean atmosphere
Biogeochemistry: Early phosphorus redigested
Atmospheric oxygen was maintained at low levels throughout huge swathes of Earth's early history. Estimates of phosphorus availability through time suggest that scavenging from anoxic, iron-rich oceans stabilized this low-oxygen world
Anaerobic nitrogen cycling on a Neoarchean ocean margin
This study was supported financially by NERC Fellowship NE/H016805/2 (to AZ), NERC Standard Grant NE/J023485/2 (to AZ and MC), NSF EAR-1455258 (to CKJ).A persistently aerobic marine nitrogen cycle featuring the biologically mediated oxidation of ammonium to nitrate has likely been in place since the Great Oxidation Event (GOE) some 2.3 billion years ago. Although nitrogen isotope data from some Neoarchaean sediments suggests transient nitrate availability prior to the GOE, these data are open to other interpretations. This is especially so as these data come from relatively deep-water environments that were spatially divorced from shallow-water settings that were the most likely sites for the accumulation of oxygen and the generation of nitrate. Here we present the first nitrogen isotope data from contemporaneous shallow-water sediments to constrain the nitrogen cycle in shallow Late Archaean settings. The BH-1 Sacha core through the Campbellrand-Malmani carbonate platform records a transition from a shallow siliciclastic/carbonate ramp to a rimmed carbonate shelf with the potential for reduced communication with the open ocean. In these settings nitrogen isotope δ15N data from sub- to peri-tidal and lagoonal settings are close to 0‰, indicating diazotrophy or the complete utilization of remineralised ammonium with an isotopic composition of near 0‰. Our dataset also includes negative δ15N values that suggest the presence of an ammonium pool of concentrations sufficient to have allowed for non-quantitative assimilation. We suggest that this condition may have been the result of upwelling of phosphorus-rich deep waters into the photic zone, stimulating primary productivity and creating an enhanced flux of organic matter that was subsequently remineralised and persisted in the dominantly anoxic Neoarchaean marine environment. Notably, we find only limited evidence of coupled nitrification/denitrification, even in these shallow water environments, calling into question previous suggestions that the Late Archaean nitrogen cycle was characterized by widespread aerobic nitrogen cycling. Rather, aerobic nitrogen cycling was likely spatially heterogeneous and tied to loci of high oxygen production while zones of shallow water anoxia persisted.PostprintPeer reviewe
Surface charge and growth of sulphate and carbonate green rust in aqueous media
We report the first determination of the point of zero charge of sulphated and carbonated green rust particles. Green rust has been recognised as a prevalent mineral in environments such as hydromorphic soils, groundwaters and anoxic Fe(II)-rich water bodies, and the evolution of its net surface charge with pH has direct implications for the uptake of contaminants, metals and nutrients in such settings. We find that the surface of both sulphated and carbonated green rust is positively charged at pH 8.3. Thus, alkaline settings will promote enhanced adsorption of metallic cations. However, the behaviour of ionic species surrounding green rust is more complicated than that predicted by simple pH-dependent adsorption, as our experiments suggest that green rust likely grows via dissolution-reprecipitation during Ostwald-ripening. This implies that adsorbed species are potentially subject to repetitive steps of release into solution, re-adsorption and co-precipitation during particle growth. The growth rate of green rust particles is highest within the first 50. min of aging, and appears to decrease towards an asymptote after 200. min, suggesting that particle growth controls on the uptake of dissolved species will be most important during the early steps of green rust growth. Our findings thus contribute to a better understanding of the controls that green rust may exert on dissolved ions in a variety of anoxic environments
The origin and rise of complex life:progress requires interdisciplinary integration and hypothesis testing
Understanding of the triggers and timing of the rise of complex life ca 2100 to 720 million years ago has expanded dramatically in recent years. This theme issue brings together diverse and novel geochemical and palaeontological data presented as part of the Royal Society ‘The origin and rise of complex life: integrating models, geochemical and palaeontological data’ discussion meeting held in September 2019. The individual papers offer prescient insights from multiple disciplines. Here we summarize their contribution towards the goal of the meeting; to create testable hypotheses for the differing roles of changing climate, oceanic redox, nutrient availability, and ecosystem feedbacks across this profound, but enigmatic, transitional period
A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide
The reaction between dissolved sulfide and synthetic iron (oxyhydr)oxide minerals was studied in artificial seawater and 0.1 M NaCl at pH 7.5 and 25°C. Electron transfer between surface-complexed sulfide and solid phase Fe(III) results in the oxidation of dissolved sulfide to elemental sulfur, and the subsequent dissolution of the surface-reduced Fe. Sulfide oxidation and Fe(II) dissolution kinetics were evaluated for freshly precipitated hydrous ferric oxide (HFO), lepidocrocite, goethite, magnetite, hematite, and Al-substituted lepidocrocite. Reaction kinetics were expressed in terms of an empirical rate equation of the form:
R-i = k(i)(H2S)(t=0)(0.5)A
where Ri is the rate of Fe(II) dissolution (RFe) or the rate of sulfide oxidation (RS), ki is the appropriate rate constant (kFe or kS), (H2S)t=0 is the initial dissolved sulfide concentration, and A is the initial mineral surface area. The rate constants derived from the above equation suggest that the reactivity of Fe (oxyhydr)oxide minerals varies over two orders of magnitude, with increasing reactivity in the order, goethite < hematite < magnetite << lepidocrocite ≈ HFO. Competitive adsorption of major seawater solutes has little effect on reaction kinetics for the most reactive minerals, but results in rates which are reduced by 65-80% for goethite, magnetite, and hematite. This decrease in reaction rates likely arises from the blocking of surface sites for sulfide complexation by the adsorption of seawater solutes during the later, slower stages of adsorption (possibly attributable to diffusion into micropores or aggregates). The derivation of half lives for the sulfide-promoted reductive dissolution of Fe (oxyhydr)oxides in seawater, suggests that mineral reactivity can broadly be considered in terms of two mineral groups. Minerals with a lower degree of crystal order (hydrous ferric oxides and lepidocrocite) are reactive on a time-scale of minutes to hours. The more ordered minerals (goethite, magnetite, and hematite) are reactive on a time-scale of tens of days. Substitution of impurities within the mineral structure (as is likely in nature) has an effect on mineral reactivity. However, these effects are unlikely to have a significant impact on the relative reactivities of the two mineral groups
Recommended from our members
An Emerging Picture of Neoproterozoic Ocean Chemistry: Insights from the Chuar Group, Grand Canyon, USA
Detailed iron, sulfur and carbon chemistry through the > 742 million year old ChuarGroup reveals a marine basin dominated by anoxic and ferrous iron-rich (ferruginous) bottom waters punctuated, late in the basin's development, by an intrusion of sulfide-rich (euxinic) conditions. The observation that anoxia occurred frequently in even the shallowest of Chuar environments (10s of meters or less) suggests that global atmospheric oxygen levels were significantly lower than today. In contrast, the transition from ferruginous to euxinic subsurface water is interpreted to reflect basinal control—specifically, increased export of organic carbon from surface waters. Low fluxes of organic carbon into subsurface water masses should have been insufficient to deplete oxygen via aerobic respiration, resulting in an oxic oxygen minimum zone (OMZ). Where iron was available, larger organic carbon fluxes should have depleted oxygen and facilitated anaerobic respiration using ferric iron as the oxidant, with iron carbonate as the expected mineralogical signature in basinal shale. Even higher organic fluxes would, in turn, have depleted ferric iron and up-regulated anaerobic respiration by sulfate reduction, reflected in high pyrite abundances. Observations from the ChuarGroup are consistent with these hypotheses, and gain further support from pyrite and sulfate sulfur isotope abundances. In general, Chuar data support the hypothesis that ferruginous subsurface waters returned to the oceans, replacing euxinia, well before the Ediacaran emergence of persistently oxygenated conditions, and even predating the Sturtian glaciation. Moreover, our data suggest that the reprise of ferruginous water masses may relate to widespread rifting during the break-up of Rodinia. This environmental transition, in turn, correlates with both microfossil and biomarker evidence for an expanding eukaryotic presence in the oceans, suggesting a physiologically mediated link among tectonics, environmental chemistry and life in the dynamic Neoproterozoic Earth system.Earth and Planetary Science
- …