297 research outputs found

    microRNA-133α regulates neurotensin-associated colonic inflammation in colonic epithelial cells and experimental colitis

    Get PDF
    Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s Disease (CD), are gastrointestinal disorders characterized by chronic and persistent inflammation. Neurotensin (NT), together with its high-affinity receptor NT receptor 1 (NTR1) are important mediators in intestinal inflammation and their expression is increased in the intestine of experimental colitis models and UC colonic biopsies. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules which act as negative transcription regulators. We have previously shown that NT exposure upregulates miR-133α expression in human colonic epithelial NCM460 cells overexpressing NTR1 (NCM460-NTR1). Recently, we have further investigated the role of miR-133α in regulation of NT-associated proinflammatory signaling cascades and acute colitis in vivo. Our study shows that NT-induced miR-133α upregulation lead to NF-κB activation and increased production of proinflammatory cytokines. In addition, intracolonic administration of antisense-miR-133α prior to colitis induction improves histological scores and proinflammatory cytokine production. More importantly, dysregulation of miR-133α levels and aftiphilin (AFTPH), a novel miR-133α downstream target, are found only in patients with UC patients, but not with CD. Taken together, we have identified NTR1/miR-133α/aftiphilin as a novel regulatory axis involved in NT-associated colonic inflammation in vitro and in vivo. Our results also provide evidence that colonic levels of NTR1, miR-133a and aftiphilin may also serve as potential biomarkers in UC

    Lin28A and Lin28B Inhibit let-7 MicroRNA Biogenesis by Distinct Mechanisms

    Get PDF
    SummaryLin28A and Lin28B selectively block the expression of let-7 microRNAs and function as oncogenes in a variety of human cancers. Lin28A recruits a TUTase (Zcchc11/TUT4) to let-7 precursors to block processing by Dicer in the cell cytoplasm. Here we find that unlike Lin28A, Lin28B represses let-7 processing through a Zcchc11-independent mechanism. Lin28B functions in the nucleus by sequestering primary let-7 transcripts and inhibiting their processing by the Microprocessor. The inhibitory effects of Zcchc11 depletion on the tumorigenic capacity and metastatic potential of human cancer cells and xenografts are restricted to Lin28A-expressing tumors. Furthermore, the majority of human colon and breast tumors analyzed exclusively express either Lin28A or Lin28B. Lin28A is expressed in HER2-overexpressing breast tumors, whereas Lin28B expression characterizes triple-negative breast tumors. Overall our results illuminate the distinct mechanisms by which Lin28A and Lin28B function and have implications for the development of new strategies for cancer therapy

    A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation

    Get PDF
    High-throughput technologies revealed new categories of genes, including the long noncoding RNAs (lncRNAs), involved in the pathogenesis of human disease; however, the role of lncRNAs in the ulcerative colitis (UC) has not been evaluated. Gene expression profiling was used to develop lncRNA signatures in UC samples. Jurkat T cells were activated by PMA/ionomycin subsequently interferon- (IFNG) and tumor necrosis factor (TNF)- protein levels were assessed by ELISA. Anti-sense molecules were designed to block IFNG-AS1 expression. A unique set of lncRNAs was differentially expressed between UC and control samples. Of these, IFNG-AS1 was among the highest statistically significant lncRNAs (fold change: 5.27, P value: 7.07E-06). Bioinformatic analysis showed that IFNG-AS1 was associated with the IBD susceptibility loci SNP rs7134599 and its genomic location is adjacent to the inflammatory cytokine IFNG. In mouse models of colitis, active colitis samples had increased colonic expression of this lncRNA. Utilizing the Jurkat T cell model, we found IFNG-AS1 to positively regulate IFNG expression. Novel lncRNA signatures differentiate UC patients with active disease, patients in remission, and control subjects. A subset of these lncRNAs was found to be associated with the clinically validated IBD susceptibility loci. IFNG-AS1 was one of these differentially expressed lncRNAs in UC patients and found to regulate the key inflammatory cytokine, IFNG, in CD4 T cells. Taking these findings together, our study revealed novel lncRNA signatures deregulated in UC and identified IFNG-AS1 as a novel regulator of IFNG inflammatory responses, suggesting the potential importance of noncoding RNA mechanisms on regulation of inflammatory bowel disease-related inflammatory responses

    MicroRNA-124 Regulates STAT3 Expression and Is Down-regulated in Colon Tissues of Pediatric Patients With Ulcerative Colitis

    Get PDF
    Background & Aims - Altered levels and functions of microRNAs (miRs) have been associated with inflammatory bowel diseases (IBDs), although little is known about their roles in pediatric IBD. We investigated whether colonic mucosal miRs are altered in children with ulcerative colitis (UC). Methods - We used a library of 316 miRs to identify those that regulate phosphorylation of STAT3 in NCM460 human colonocytes incubated with interleukin-6. Levels of miR-124 were measured by real-time PCR analysis of colon biopsies from pediatric and adult patients with UC and patients without IBD (controls), and of HCT-116 colonocytes incubated with 5-aza-2’-deoxycytidine. Methylation of the MIR124 promoter was measured by quantitative methylation-specific PCR. Results - Levels of phosphorylated STAT3 and the genes it regulates (encoding VEGF, BCL2, BCLXL, and MMP9) were increased in pediatric patients with UC, compared to control tissues. Overexpression of miR-124, let-7, miR-125, miR-26, or miR-101 reduced STAT3 phosphorylation by ≥75% in NCM460 cells; miR-124 had the greatest effect. miR-124 was downregulated specifically in colon tissues from pediatric patients with UC and directly targeted STAT3 mRNA. Levels of miR-124 were decreased whereas levels of STAT3 phosphorylation increased in colon tissues from pediatric patients with active UC, compared to those with inactive disease. Furthermore, levels of miR-124 and STAT3 were inversely correlated in mice with experimental colitis. Downregulation of miR-124 in tissues from children with UC was attributed to hypermethylation of its promoter region. Incubation of HCT-116 colonocytes with 5-aza-2’ deoxycytidine upregulated miR-124 and reduced levels of STAT3 mRNA. Conclusions - MiR-124 appears to regulate the expression of STAT3. Reduced levels of miR-124 in colon tissues of children with active UC appear to increase expression and activity of STAT3, which could promote inflammation and pathogenesis of UC in children

    miR-24 is elevated in ulcerative colitis patients and regulates intestinal epithelial barrier function

    Get PDF
    Inflammatory bowel disease is characterized by high levels of inflammation and loss of barrier integrity in the colon. The intestinal barrier is a dynamic network of proteins that encircle intestinal epithelial cells. miRNAs regulate protein-coding genes. In this study, miR-24 was found to be elevated in colonic biopsies and blood samples from ulcerative colitis (UC) patients compared with healthy controls. In the colon of UC patients, miR-24 is localized to intestinal epithelial cells, which prompted an investigation of intestinal epithelial barrier function. Two intestinal epithelial cell lines were used to study the effect of miR-24 overexpression on barrier integrity. Overexpression of miR-24 in both cell lines led to diminished transepithelial electrical resistance and increased dextran flux, suggesting an effect on barrier integrity. Overexpression of miR-24 did not induce apoptosis or affect cell proliferation, suggesting that the effect of miR-24 on barrier function was due to an effect on cell–cell junctions. Although the tight junctions in cells overexpressing miR-24 appeared normal, miR-24 overexpression led to a decrease in the tight junction–associated protein cingulin. Loss of cingulin compromised barrier formation; cingulin levels negatively correlated with disease severity in UC patients. Together, these data suggest that miR-24 is a significant regulator of intestinal barrier that may be important in the pathogenesis of UC

    Constitutive TL1A (TNFSF15) Expression on Lymphoid or Myeloid Cells Leads to Mild Intestinal Inflammation and Fibrosis

    Get PDF
    TL1A is a member of the TNF superfamily and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, a subset of Crohn's disease (CD) patients with the risk TL1A haplotype is associated with elevated TL1A expression and a more severe disease course. To investigate the in vivo role of elevated TL1A expression, we generated two transgenic (Tg) murine models with constitutive Tl1a expression in either lymphoid or myeloid cells. Compared to wildtype (WT) mice, constitutive expression of Tl1a in either lymphoid or myeloid cells showed mild patchy inflammation in the small intestine, which was more prominent in the ileum. In addition, mice with constitutive Tl1a expression exhibited enhanced intestinal and colonic fibrosis compared to WT littermates. The percentage of T cells expressing the gut homing chemokine receptors CCR9 and CCR10 was higher in the Tl1a Tg mice compared to WT littermates. Sustained expression of Tl1A in T cells also lead to increased Foxp3+ Treg cells. T cells or antigen presenting cells (APC) with constitutive expression of Tl1a were found to have a more activated phenotype and mucosal mononuclear cells exhibit enhanced Th1 cytokine activity. These results indicated an important role of TL1A in mucosal T cells and APC function and showed that up-regulation of TL1A expression can promote mucosal inflammation and gut fibrosis
    corecore