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SUMMARY

Lin28A and Lin28B selectively block the expression
of let-7 microRNAs and function as oncogenes in a
variety of human cancers. Lin28A recruits a TUTase
(Zcchc11/TUT4) to let-7 precursors to block process-
ing by Dicer in the cell cytoplasm. Here we find that
unlike Lin28A, Lin28B represses let-7 processing
through a Zcchc11-independent mechanism. Lin28B
functions in the nucleus by sequestering primary
let-7 transcripts and inhibiting their processing by
theMicroprocessor. The inhibitory effects of Zcchc11
depletion on the tumorigenic capacity andmetastatic
potential of human cancer cells and xenografts are
restricted toLin28A-expressing tumors. Furthermore,
the majority of human colon and breast tumors
analyzed exclusively express either Lin28A or
Lin28B. Lin28A is expressed in HER2-overexpressing
breast tumors, whereas Lin28B expression charac-
terizes triple-negative breast tumors. Overall our
results illuminate the distinct mechanisms by which
Lin28A and Lin28B function and have implications
for the development of new strategies for cancer
therapy.

INTRODUCTION

Control of gene expression by microRNAs (miRNAs) is important

for normal development. AlteredmiRNA expression is linkedwith

various diseases including cancer (Small and Olson, 2011).

miRNA biogenesis begins with transcription of primary tran-

scripts (pri-miRNAs) that contain a stem-loop structure. In the

cell nucleus, pri-miRNAs are processed by the Microprocessor,

containing the ribonuclease Drosha and its essential cofactor

DGCR8 (Denli et al., 2004; Gregory et al., 2004). The Micropro-

cessor cleaves the double-stranded RNA toward the base of
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the stem loop to release a 60–80 nucleotide (nt) precursor (pre-

miRNA) that is exported to the cell cytoplasm and cleaved by

Dicer to generate a 22 nt duplex (Hutvágner et al., 2001; Krol

et al., 2010). One RNA strand is bound by Argonaute and incor-

porated into the RNA-induced silencing complex (RISC) (Greg-

ory et al., 2005; Liu et al., 2004). Basepairing between themiRNA

and target mRNA guides RISC to complementary transcripts,

leading to gene repression through mRNA degradation and/or

translational repression (Krol et al., 2010).

Altered miRNA expression is directly associated with cancer

initiation, progression, and metastasis and is observed in a

wide variety of human malignancies (Di Leva and Croce, 2010).

The let-7 miRNA family members act as tumor suppressors by

inhibiting expression of oncogenes and key regulators of mito-

genic pathways including RAS, MYC, and HMGA2 (Büssing

et al., 2008). let-7 is downregulated in numerous different

cancers, and low let-7 correlates with poor prognosis (Boyerinas

et al., 2010; Shell et al., 2007; Takamizawa et al., 2004). Restora-

tion of let-7 expression effectively inhibits cancer growth in

mouse models of lung and breast cancers (Barh et al., 2010;

Esquela-Kerscher et al., 2008; Slack, 2009; Trang et al., 2010;

Yu et al., 2007a). In humans, there are 12 let-7 family members

(let-7a-1, -2, -3; let-7b; let-7c; let-7d; let-7e; let-7f-1, -2; let-7g;

let-7i; miR-98) located at eight different chromosomal loci. Of

note, many tumors are characterized by the coordinate downre-

gulation of multiple let-7 miRNAs (Shell et al., 2007).

The developmentally regulated RNA-binding protein Lin28

was found to selectively repress expression of let-7 miRNAs

(Heo et al., 2008; Newman et al., 2008; Rybak et al., 2008; Viswa-

nathan et al., 2008). This posttranscriptional regulation of let-7

by Lin28 is required for normal development and contributes to

the pluripotent state by preventing let-7-mediated differentiation

of embryonic stem cells (ESCs). Lin28 overexpression or let-7

inhibition with antisense RNAs promotes reprogramming of

human and mouse fibroblasts to induced pluripotent stem cells

(iPSCs) (Martinez and Gregory, 2010; Melton et al., 2010; Yu

et al., 2007b). Unlike in C. elegans where a single Lin28 gene is

responsible for repression of let-7 expression and control of
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developmental timing, the mammalian genome encodes two

Lin28 paralogs, Lin28 (hereafter Lin28A) and Lin28B (Guo

et al., 2006; Lehrbach et al., 2009; Moss et al., 1997; Van Wyns-

berghe et al., 2011; Viswanathan and Daley, 2010). Lin28B also

represses expression of multiple let-7 members, and genome-

wide association studies (GWAS) have linked Lin28B with the

determination of human height and control of the age of onset

of puberty and menopause, phenotypes that are recapitulated

in a mouse model (Zhu et al., 2010). Activation of Lin28A/

Lin28B occurs in several different primary human tumors, and

these tumors display low levels of let-7 expression (Iliopoulos

et al., 2009; Viswanathan et al., 2009). Indeed, Lin28A/Lin28B

function as oncogenes that promote cellular transformation

when ectopically expressed (Iliopoulos et al., 2009; Viswanathan

et al., 2009; West et al., 2009). Importantly, this effect is abro-

gated when let-7 is reintroduced into these cells (Iliopoulos

et al., 2009; Viswanathan et al., 2009). Therefore, Lin28-medi-

ated cellular transformation is directly dependent on let-7 levels.

Conversely, depletion of Lin28A or Lin28B in human cancer cells

results in decreased cell proliferation (Chang et al., 2009; Iliopou-

los et al., 2009; Viswanathan et al., 2009). Lin28A/Lin28B may

contribute to the development of aggressive, poorly differenti-

ated tumors because their expression is associated with

advanced disease in hepatocellular carcinoma (HCC), chronic

myeloid leukemia (CML), Wilms’ tumor, ovarian carcinoma,

colon adenocarcinoma, and germ cell tumors (Dangi-Garimella

et al., 2009; Guo et al., 2006; Iliopoulos et al., 2009; Ji and

Wang, 2010; King et al., 2011; Liang et al., 2010; Lu et al.,

2009; Oh et al., 2010; Peng et al., 2010; Viswanathan et al.,

2009; Wang et al., 2010; West et al., 2009; Yang et al., 2010)

and is associated with poor clinical outcome and patient survival

in HCC, colon, and ovarian cancer (King et al., 2011; Lu et al.,

2009; Viswanathan et al., 2009). In the case of Lin28B, rare

amplification or translocation events might explain activation in

some cases (Viswanathan et al., 2009). A more common mech-

anism might be transcriptional activation by upstream factors.

For example, c-Myc binds to both Lin28A and Lin28B loci and

activates expression of these genes (Chang et al., 2009). In

a breast cancer model, transient expression of Src oncoprotein

results in a transformed cell line that forms self-renewing mam-

mospheres harboring tumor-initiating cells (Iliopoulos et al.,

2009). The transformation process involves NF-kB activation

leading to direct transcriptional upregulation of Lin28B, conse-

quent let-7 loss, and derepression of the let-7 target gene IL-6.

Because IL-6 activates NF-kB, this regulatory circuit represents

a positive feedback loop, providing a molecular link between

inflammation and cancer.

Selective regulation of let-7 expression involves Lin28A

binding to the terminal loop of let-7 precursors, a molecular

recognition that requires both the cold shock domain (CSD)

and CCHC-type zinc finger RNA-binding domains of the

Lin28A protein (Piskounova et al., 2008). Lin28A recruits the

activity of a terminal uridylyltransferase (TUTase), Zcchc11

(also known as TUTase4 or TUT4), that inhibits pre-let-7 pro-

cessing by Dicer and leads to the rapid decay of oligouridylated

pre-let-7 RNAs (Hagan et al., 2009; Heo et al., 2009). Although

both Lin28A and Lin28B can recruit Zcchc11/TUT4 to uridylate

pre-let-7 in vitro, the molecular mechanism of the Lin28B-medi-
C

ated blockade of let-7 expression has yet to be determined (Heo

et al., 2008, 2009). Here we investigate the regulation of let-7

expression by Lin28B. Surprisingly, we find that despite their

high degree of homology, Lin28A and Lin28B function through

distinct mechanisms. Depletion of Zcchc11 affects let-7 expres-

sion only in Lin28A-expressing cancer cells, whereas Lin28B

functions through a Zcchc11-independent mechanism. We find

that Lin28A and Lin28B are differentially localized in cells with

predominantly cytoplasmic Lin28A, whereas due to its functional

nuclear localization signals, Lin28B accumulates in the nucleus,

where it binds pri-let-7 miRNAs to block processing by the

Microprocessor. In contrast, Lin28A functions in the cytoplasm

by blocking at the Dicer step and recruiting the TUTase to uridy-

late pre-let-7. Our findings identify Zcchc11 as a possible thera-

peutic target in Lin28A-expressing cancers. Accordingly, we

demonstrate that Zcchc11 depletion selectively inhibits the

tumorigenic capacity and metastatic potential of Lin28A- but

not Lin28B-expresing human cancer cells and xenografts. Our

results illuminate the distinct mechanisms by which Lin28A and

Lin28B function and have broad implications for the develop-

ment of new strategies for cancer therapy.

RESULTS

Lin28B Regulates let-7 Expression through
a Zcchc11-Independent Mechanism
The paralogous RNA-binding proteins Lin28A and Lin28B have

a high degree of sequence identity and conserved domain orga-

nization (Figure 1A), and both proteins selectively block let-7

expression (Newman et al., 2008; Viswanathan et al., 2008).

We screened several human cancer cell lines and found that

some express Lin28A, whereas others express Lin28B (Fig-

ure 1B). We did not observe coexpression of both Lin28A and

Lin28B in any cell line, suggesting that their expression may be

mutually exclusive. We found ubiquitous Zcchc11 expression.

HeLa cells express Zcchc11 but neither Lin28A nor Lin28B.

Because Lin28A-mediated repression of let-7 in mouse ESCs

(mESCs) involves the TUTase Zcchc11, we next asked whether

Lin28A and Lin28B function through the same mechanism to

block let-7 processing. Previous reports have used recombinant

Lin28A and Lin28B interchangeably in biochemical assays,

demonstrating that Lin28B is capable of enhancing Zcchc11

activity in vitro; however, the physiological relevance of these

observations remains unknown (Heo et al., 2009).

To begin to investigate whether both Lin28A and Lin28B

function through a Zcchc11 TUTase-dependent mechanism,

we performed coimmunoprecipitation (co-IP) experiments.

Myc-tagged Lin28A, Lin28B, or Ago2 were coexpressed with

either Flag-tagged Zcchc11 or Flag-EIF6 control (Figure 1C).

Because the Lin28A-Zcchc11 interaction has been shown to

be RNA dependent, we also coexpressed pri-let-7g (Heo et al.,

2009). Consistent with earlier reports, myc-Lin28A was found

to be associated with affinity-purified Flag-Zcchc11 (Heo et al.,

2009). However, we were unable to detect a physical interaction

between myc-Lin28B and Flag-Zcchc11. We performed addi-

tional co-IP experiments in which we titrated the amount of

exogenously expressed Flag-Zcchc11. These experiments con-

firmed the specific physical interaction of Zcchc11 and Lin28A,
ell 147, 1066–1079, November 23, 2011 ª2011 Elsevier Inc. 1067



Figure 1. Lin28B Regulates let-7 Biogenesis through a Zcchc11-Independent Mechanism

(A) Schematic representation of human Lin28A and Lin28B.

(B) Western blot analysis of Zcchc11, Lin28A, and Lin28B in extracts prepared from human cancer cell lines.

(C) Coimmunoprecipitation (co-IP): HeLa cells were cotransfected with human myc-Lin28A, myc-Lin28B, or myc-Ago2 with either Flag-Zcchc11 or Flag-EIF6.

Flag-IP and Flag- and Myc-western blots were performed to detect expression and interaction, respectively. See also Figure S1.

(D) Stable knockdown of Zcchc11 leads to upregulation of mature let-7g levels in Lin28A-expressing cells but not Lin28B-expressing cell lines. miRNA levels were

measured by qRT-PCR. Error bars represent SEM (n = 3). Protein knockdown was monitored by western blot.
whereas myc-Lin28B was not detected in any of the Flag-

Zcchc11 IPs (Figure S1A available online). This was additionally

confirmed by the co-IP of endogenous Lin28A in Igrov1 cells

(Figure S1B). Together, these results indicate that unlike for
1068 Cell 147, 1066–1079, November 23, 2011 ª2011 Elsevier Inc.
Lin28A, we could not detect any physical interaction between

Lin28B and Zcchc11.

Next, to address the functional requirement of Zcchc11 in the

Lin28A- and Lin28B-mediated repression of let-7 expression, we



performed a series of knockdown experiments to deplete

Zcchc11 in a panel of human cancer cell lines. We used shRNAs

to deplete Lin28A or Zcchc11 expression in Igrov1 cells and

measured the effect on let-7 expression by quantitative reverse

transcription PCR (q.RT-PCR). As expected, depletion of

Lin28A led to an �10-fold increase in let-7 levels. Knockdown

of Zcchc11 with three independent shRNAs also led to elevated

mature let-7 levels (Figure 1D). Therefore, Zcchc11 is involved in

the repression of let-7 expression in this Lin28A-expressing

human cancer cell line as has been previously reported in

mESCs and embryonal carcinoma cells (Hagan et al., 2009;

Heo et al., 2009). We performed analogous experiments in

three different Lin28B-expressing cancer cell lines, HepG2,

K562, and H1299 (Figure 1D), and found no significant effect

on mature let-7 levels in any of the cell lines when Zcchc11

was depleted. In contrast, knockdown of Lin28B consistently

led to the expected increase in mature let-7. Overall our results

indicate that Zcchc11 negatively regulates let-7 expression in

Lin28A- but not Lin28B-expressing cell lines, suggesting that

Lin28B employs a Zcchc11-independent mechanism to block

let-7 processing.

Lin28B Localizes to the Nucleus
We sought potential explanations for the functional differences

between Lin28A and Lin28B. We used immunofluorescence

assays to examine the subcellular localization of the endoge-

nous Lin28A and Lin28B proteins (Figure 2A). Lin28A was

mostly localized to the cytoplasm of Igrov1 cells, whereas

Lin28B localized to specific foci in the nuclei of H1299 cells

where it colocalized with the nucleolar marker Fibrillarin. To

further confirm the localization of Lin28B in the nucleoli, we per-

formed immunofluorescence assays on H1299 cells in which

Lin28B expression (or control) was stably knocked down by

shRNA and showed that the observed nucleolar staining pattern

is specific to Lin28B (Figure 2B). These data were further

confirmed by biochemical fractionation and western blot of

both cell lines (Figure 2C). Consistent with published data, we

found Zcchc11 only in the cytoplasmic fraction in both the

Lin28A- and Lin28B-expressing cell lines (Figure 2C). These

data suggest that the divergence in the mechanisms by which

Lin28A and Lin28B block let-7 biogenesis derives from their

differential subcellular localization. The lack of physical and

functional interactions between Zcchc11 and Lin28B is there-

fore likely due to their localization to distinct cellular compart-

ments, even though recombinant Lin28B has the capacity to

enhance Zcchc11 activity in vitro (Heo et al., 2009).

Lin28B Contains Functional Nuclear Localization
Signals
Lin28B protein has an extendedC terminus compared to Lin28A,

which upon closer inspection contains a putative bipartite

nuclear localization signal (NLS), KK[GPSVQ]KRKK. Another

potential NLS, RRPK[GKTLQ]KRKPK, was identified in the linker

region that connects the two functional RNA-binding domains

(Figure 2D). To test the function of these putative NLS, we gener-

ated constructs for the expression of a series of GFP fusion

proteins. We transiently transfected HeLa cells with these

constructs and analyzed the subcellular localization of the GFP
C

fusion proteins by microscopy (Figure 2E). Consistent with the

localization of endogenous Lin28A in Igrov1 cells, we found

that Lin28A-GFP localized mainly to the cytoplasm. Lin28B-

GFP predominantly localized to specific foci in the nucleus, again

recapitulating the nucleolar localization of endogenous Lin28B

observed in H1299 cells. When we exogenously expressed the

Lin28BDNLS#1 truncation, we observed increased signal in the

cytoplasm; however, some nucleolar localization still remained

consistent with the presence of a second NLS. Indeed, the

double-mutant Lin28B-GFP protein lacking both NLS showed

cellular localization similar to that of GFP alone, suggesting

that both NLS elements are important for nuclear and nucleolar

localization of Lin28B (Figure 2E). To further determine whether

these sequences represent functional NLS, we examined the

localization of the NLS#1-GFP and NLS#2-GFP (Figure 2E).

When exogenously expressed in HeLa cells, NLS#1-GFP local-

ized nearly entirely throughout the nucleus including the nucleoli.

This is in contrast to the control GFP construct that is broadly

distributed throughout the cell. NLS#2-GFP was nearly entirely

localized to the nucleoli (Figure 2E). Together these results iden-

tify that NLS#1 amino acid sequence represents a bona fide

NLS, and that NLS#2 is a functional nucleolar localization signal

(NoLS). NoLS properties are less well known and have only

recently been studied at the amino acid sequence level (Scott

et al., 2010). Several reports suggest that proteins with a NoLS

also contain an NLS that allows them to cross the nuclear

membrane before localizing to the nucleoli. These GFP-fusion

results were confirmed by biochemical fractionation of HeLa

cells transiently expressing either Flag-Lin28A, full-length, trun-

cated, or double-mutant Flag-Lin28B. As expected Flag-Lin28A

was predominantly present in the cytoplasmic fraction, Flag-

Lin28Bwasmostly nuclear, NLS#1mutant only showedmarginal

increase of signal in the cytoplasmic fraction, whereas the

double-mutant Flag-Lin28B showed a more significant increase

in cytoplasmic signal (Figure 2F).

Lin28B Localizes to Nucleoli where the Microprocessor
Is Absent
We next compared the specific localization of Lin28Bwith that of

the nuclear miRNA processing machinery. We found that the

Microprocessor components DGCR8 and Drosha colocalize in

the nucleoplasm but are excluded from nucleoli (Figure 3A). To

further confirm that localization of Lin28B is distinct and

nonoverlapping with the Microprocessor, we examined the co-

localization of mCherry-DGCR8 and GFP-Lin28A/B proteins in

transfected cells (Figure 3B). Lin28A localizedmostly to the cyto-

plasm and therefore showed no overlapwith the nuclear DGCR8.

Lin28B localized to nucleoli and did not overlap with DGCR8

either. In contrast, the localization of the Lin28B NLS/NoLS

mutant showed a broadly dispersed localization throughout the

nucleus and cytoplasm (similar to GFP control) and displayed

colocalization with DGCR8 in the nucleoplasm. We confirmed

this finding that Lin28B and theMicroprocessor normally occupy

distinct compartments in the nucleus by performing large-scale

biochemical fractionation and western blot of a stable HeLa cell

line expressing Flag-Lin28B. Lin28B was specifically present in

the nucleolar-enriched fractions whereas DGCR8 was only

detectable in the nuclear fraction and not in the nucleolar
ell 147, 1066–1079, November 23, 2011 ª2011 Elsevier Inc. 1069



Figure 2. Lin28A and Lin28B Are Differentially Localized within the Cell

(A) Immunofluorescence detection of endogenous Lin28A in Igrov1 and Lin28B in H1299 cell lines. Fibrillarin, a known nucleolar protein, was used as a positive

control.

(B) Immunofluorescence analysis of control and Lin28B knockdown H1299 cell lines.

(C) Biochemical fractionation of Igrov1 and H1299 cell lines. Endogenous Lin28A, Lin28B, and Zcchc11 in each fraction were detected by western blot. Fibrillarin

was used as a nuclear marker; Tubulin was used as a cytoplasmic marker.

(D) Schematic of NLS in the Lin28B protein. An arginine as well as several lysines that were replaced by glycines are underlined and italicized.

(E) Localization of GFP-Lin28 fusion proteins in HeLa cells.

(F) Fractionation of Flag-Lin28 proteins, exogenously expressed in HeLa cells. Proteins were detected by Flag-western blot.
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Figure 3. Lin28B Localizes to Nucleoli where the Microprocessor Is

Absent
(A) Colocalization of the Microprocessor components GFP-Drosha and

mCherry-DGCR8 in HeLa cells reveals their distribution throughout the

nucleus and exclusion from nucleoli.

(B) Localization of GFP-Lin28A, Lin28B, or mutant Lin28B proteins with

mCherry-DGCR8 in HeLa cells reveals nonoverlapping localization of Lin28B

and DGCR8.

(C) Fractionation of a Flag-Lin28B HeLa stable cell line. Flag-Lin28B and

endogenous DGCR8 were detected by western blot and show a nonoverlap-

ping subcellular localization of Lin28B and the Microprocessor. Fibrillarin was

used as a control for nucleolar localization.
fractions (Figure 3C). Overall, these findings suggest a possible

mechanism by which Lin28B blocks let-7 processing in the

nucleus by sequestering pri-let-7 miRNAs in the nucleoli away

from the Microprocessor.

Lin28B Directly Binds and Sequesters Pri-let-7
To further dissect the mechanism of the Lin28B-mediated let-7

processing block, we first compared the relative abilities of

recombinant human Lin28A and Lin28B proteins to bind pre-

let-7 (Figures 4A, 4B, and S2).We performed electromobility shift

assay (EMSA) with pre-let-7g to analyze the relative binding

affinities of the two recombinant proteins. We found that

Lin28A and Lin28B have apparent dissociation constants (KD)

of approximately 0.6 nM and 0.5 nM, respectively (Figure 4B).
C

Both these estimated KD are much lower than previously re-

ported for recombinant mouse Lin28A. This difference is likely

due to the omission here of nonspecific yeast transfer RNA

(tRNA) competitor used previously in the binding buffer (Piskou-

nova et al., 2008). We also performed EMSA with pri-let-7g and

demonstrated that both recombinant Lin28A and Lin28B are

able to bind pri-let-7g with similar affinities (Figure 4C). Collec-

tively, these assays reveal that both Lin28 proteins can directly

bind to let-7 precursors with high affinity in vitro.

To gain further support for our model in which Lin28B binds

and sequesters pri-let-7 in the nucleus to inhibit the Micropro-

cessor, we next examined the RNA associated with Lin28B.

We individually expressed and purified Flag-Lin28A and Flag-

Lin28B, extracted the associated RNA, and analyzed relative

levels of pri-let-7g by qRT-PCR. This RNA immunoprecipitation

(RIP) analysis revealed that Lin28B directly associates with pri-

let-7g RNA (Figure 4D). We detected an �18-fold enrichment

of pri-let-7 associated with Lin28B. Furthermore, we found

substantially more pri-let-7 associated with Lin28B than with

Lin28A, which is consistent with the differential subcellular local-

ization of these proteins. Taken together, these results indicate

that this preferential association of pri-let-7g with Lin28B likely

reflects the distinct mechanism by which Lin28B represses

let-7 expression rather than any possible intrinsic differences in

the relative RNA-binding affinities of Lin28A and Lin28B proteins.

Next, we examined by qRT-PCR the effect of transient Lin28B

overexpression on pri-let-7g levels. Transient Lin28B overex-

pression led to �12-fold accumulation of pri-let-7g levels (Fig-

ure 4E). In contrast, overexpression of Lin28A only had a more

modest effect on pri-let-7g levels, consistent with its predomi-

nantly cytoplasmic localization. In order to further assess the

effects of Lin28B overexpression on both pri- andmature miRNA

levels, we utilized a Flag-Lin28B expressing a HeLa stable cell

line. Analysis of several pri-miRNAs by qRT-PCR in this cell

line demonstrated a substantial accumulation of pri-let-7

miRNAs, >10-fold for pri-let-7g and >3-fold for pri-let-7a-1.

There was, however, no effect on levels of pri-miR-21 (Figure 4F).

We detected a corresponding decrease in the levels of mature

let-7, with >90%decrease formature let-7g and�40%decrease

for mature let-7a. Again no effect was observed on levels of

mature miR-21 (Figure 4F). Together, these data support our

model whereby nuclear Lin28B directly associates with pri-

let-7, sequestering it from cleavage by the Microprocessor to

selectively inhibit let-7 maturation, and underscore our findings

that the paralogous RNA-binding proteins Lin28A and Lin28B

operate by distinct mechanisms to selectively repress let-7

expression.

Zcchc11 Inhibition Blocks the Tumorigenicity and
Invasiveness of Lin28A- but Not Lin28B-Expressing
Breast Cancer Cells In Vitro and In Vivo
We were motivated to further explore the relevance of our find-

ings that Lin28A and Lin28B block let-7 processing through

distinct mechanisms and to examine the effect of Zcchc11

inhibition on the tumorigenicity and invasiveness of human

Lin28A/B-expressing cancer cells. Initially, we tested the conse-

quences of Zcchc11 inhibition in the MCF10A ER-Src-inducible

model of cellular transformation, where MCF10A-immortalized
ell 147, 1066–1079, November 23, 2011 ª2011 Elsevier Inc. 1071



Figure 4. Lin28B Directly Binds and Sequesters Pri-let-7

(A) Colloidal blue staining of purified recombinant His-Lin28A and His-Lin28B proteins.

(B) Binding of r.Lin28A and r.Lin28B to pre-let-7g was assessed by EMSA performed with 0.5 nM 50-end labeled pre-let-7g RNA and the indicated concentration

of recombinant protein. Band intensities were quantitated from three independent experiments and represented as the fraction of bound pre-let-7g RNA in the

plots. Values are given as average ± SEM (n = 3). See also Figure S2.

(C) EMSA performed indicated concentration of r.Lin28A and r.Lin28B with in vitro transcribed uniformly labeled pri-let-7g.

(D) RIP analysis of RNA associated with immunopurified Flag-Lin28A and Flag-Lin28B from HeLa cells. RNA was extracted from IP material and analyzed by

qRT-PCR. Error bars ± SEM (n = 3). Lower panel indicates relative Lin28A and Lin28B expression levels by Flag-western blot.

(E) Accumulation of pri-let-7 by transient Lin28B expression in HeLa cell detected by qRT-PCR. Error bars ± SEM (n = 3). Lower panel indicates relative

expression levels of Lin28A and Lin28B proteins detected by Flag-western blot in transfected cells.

(F) pri-let-7 accumulates (top panel) and mature let-7 levels decrease (bottom panel) in HeLa cells stably overexpressing Lin28B. Error bars ± SEM (n = 3).
breast epithelial cells become transformed 36 hr post-tamoxifen

(TAM) treatment (Iliopoulos et al., 2009). We previously reported

that Lin28B expression is activated and required for induction
1072 Cell 147, 1066–1079, November 23, 2011 ª2011 Elsevier Inc.
and maintenance of the transformed phenotype in this model

(Figures S3A and S3B). In contrast, Zcchc11 depletion did not

affect transformation or colony formation (Figures S3B–S3D)



Figure 5. Zcchc11 Inhibition Blocks Tumorigenicity and Invasiveness of Lin28A-Expressing Breast Cancer Cells

(A) qRT-PCR analysis of Zcchc11 knockdown in MDA-MB-231 and T47D breast cancer cells. Error bars ± SEM (n = 3).

(B) Inhibition of Zcchc11 expression does not affect let-7a expression in Lin28B-expressing cells (MDA-MB-231), whereas it upregulates let-7a expression in

Lin28A-expressing cells (T47D). Let-7a expression levels were measured by qRT-PCR in cells treated with siRNAs for 48 hr. Error bars ± SEM (n = 3).

(C) Inhibition of Zcchc11 expression did not affect the colony formation ability ofMDA-MB-231 cells but suppressed the colony formation ability of T47D cells. The

number of colonies was evaluated 20 days post-plating in soft agar. The experiment was repeated thrice, and the statistical significance was calculated using

Student’s t test.

(D) Inhibition of Zcchc11 expression did not affect the invasiveness ofMDA-MB-231 cells but suppressed the invasive ability of T47D cells. The number of invasive

cells was measured 16 hr post-transfection with indicated siRNAs. In all assays, 10 fields per insert were scored, and SD was measured. The experiment was

repeated thrice, and the statistical significance was calculated using Student’s t test.

(E) Inhibition of Zcchc11 expression did not suppress tumor growth of MDA-MB-231 cells in xenografts, but it inhibited tumor growth of T47D cells in xenografts.

The treatments with indicated siRNA were performed i.p. for five cycles starting on day 15. Each treatment group consisted of five mice.
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and did not affect the expression of let-7a and its direct down-

stream target IL-6 (Figures S3D–S3F). Accordingly, Zcchc11

inhibition did not affect the tumorigenicity of MCF10A ER-Src-

transformed cells in xenograft assays (Figure S3G). Overall,

these data suggest that inhibition of Zcchc11 does not have an

inhibitory effect on the tumorigenicity and invasiveness of

Lin28B-expressing MCF10A ER-Src cells.

To further explore the distinct requirements for Zcchc11 in

Lin28A- and Lin28B-expressing cancer, we compared the

effects of Zcchc11 inhibition on the tumorigenicity and invasive-

ness of MDA-MB-231 breast cancer cells (Lin28B-expressing

cells) relative to T47D breast cancer cells (Lin28A-expressing

cells). We found that suppression of Zcchc11 expression did

not affect let-7a expression in MDA-MB-231 cells but led to

a 7-fold increase in mature let-7a levels in T47D cells (Figures

5A and 5B). Furthermore, Zcchc11 inhibition did not affect the

tumorigenicity and invasiveness of MDA-MB-231 cells, although

it suppressed both the colony formation ability and invasiveness

of T47D cells (Figures 5C and 5D). Zcchc11 inhibition had similar

effects on the tumor growth of these cell lines in xenografts.

Specifically, Zcchc11 knockdown did not affect tumor growth

of MDA-MB-231, whereas it suppressed T47D tumor growth

(Figure 5E). Synthetic let-7a miRNA suppressed both MDA-

MB-231 and T47D tumor growth (Figure 5E). Also, in the tumors

derived from MDA-MB-231 xenografts (day 30), let-7a expres-

sion was not affected by inhibition of Zcchc11, whereas

Lin28B suppression increased let-7a levels about 5-fold (Figures

5F and 5G). On the other hand, both Zcchc11 and Lin28A inhibi-

tion resulted in upregulation of let-7a expression to similar levels

in T47D-derived tumors (day 30) (Figures 5F and 5G).

In addition to the breast cancer cells, we tested the effects of

Zcchc11 inhibition on tumor growth of several other (liver, lung,

ovarian, melanoma, colon) cancer cell types (Figure 6A). As

above, we found that Zcchc11 inhibition (Figure 6B) blocked

the growth of Lin28A-expressing tumors (Igrov1) and did not

affect the growth of Lin28B-expressing tumors (HepG2,

H1299, SK_MEL_28, CaCO2) (Figure 6A). Lin28A and Lin28B

inhibition suppressed the growth of the corresponding tumors

(Figures 6C and 6D). Taken together, these data suggest that

Zcchc11 plays a role in the tumorigenicity and invasiveness of

Lin28A-expressing cancer cells, but depletion of Zcchc11 in

Lin28B-expressing cancer cell lines has no effect on cancer

growth.
Lin28A and Lin28B Expression Levels in Human Colon
and Breast Tissues
To further study the disease relevance of our findings, we

measured Lin28A and Lin28B expression in human colon and

breast tissues. We found that Lin28A or Lin28B is upregulated

whereas let-7a is downregulated in colon adenocarcinomas

relative to normal colon tissues (Figure 7A). Specifically, we
(F) qRT-PCR analysis of siRNA inhibition of Lin28B, Lin28A, and Zcchc11 in xeno

SEM (n = 3).

(G) Inhibition of Lin28B but not of Zcchc11 allows upregulation of let-7a expres

Lin28A or Zcchc11 results in let-7a upregulation in T47D xenograft tumors. Let-7a

with indicated siRNA. Error bars ± SEM (n = 3). See also Figure S3.
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identified that Lin28A was upregulated in 19/45 colon adenocar-

cinomas, whereas Lin28B was upregulated in 14/45 colon

adenocarcinomas. We found that the colon tumors with Lin28A

overexpression had very low levels of Lin28B and vice versa.

Furthermore, immunohistochemistry and in situ hybridization

analyses in normal and colon cancer tissues revealed that

Lin28A or Lin28B proteins are upregulated whereas let-7a is

downregulated in colon carcinomas relative to normal colon

tissues (Figures 7B and S4). Similar to the mRNA data, immuno-

histochemistry revealed that tumors that expressed high Lin28A

protein levels had low levels for Lin28B and vice versa. This is

consistent with our analysis of human cancer cell lines where

we did not find cells that express both Lin28A and Lin28B (Fig-

ure 1B and data not shown).

We also found that Lin28A or Lin28Bwas upregulatedwhereas

let-7a was downregulated in breast cancer relative to normal

breast tissues (Figure 7C). Specifically, we identified that

Lin28A was upregulated in 9/33 breast carcinomas, whereas

Lin28B was upregulated in 10/33 breast carcinomas. Similar to

the colon tissues, we detected that the breast tumors that

overexpressed Lin28A had very low levels of Lin28B and vice

versa. In addition, we detected that Lin28A was significantly

upregulated in HER2-overexpressing breast tumors, whereas

Lin28B was significantly upregulated in triple-negative

(ER�,PR�,HER2�) breast tumors (Figure 7D). Furthermore, ac-

cording to our previous studies, Lin28B expression is a part of

an inflammatory circuit and is regulated by NF-kB transcription

factor (Iliopoulos et al., 2009). Thus, we tested how NF-kB

activity correlates with Lin28A or Lin28B mRNA levels in human

breast tumors. We found a statistically significant correlation

between NF-kB nuclear levels and Lin28B but not Lin28A

expression levels (Figure 7E). These data suggest that NF-kB

regulates the Lin28B but not Lin28A pathway. Also, in order to

have a broader view of Lin28A and Lin28B expression levels in

human cancer tissues, we tested their expression levels in

kidney, liver, lung, ovarian, prostate, and thyroid cancer (Fig-

ure 7F). These data reveal that Lin28B is upregulated in liver,

ovarian, and thyroid carcinomas.
DISCUSSION

Lin28A and Lin28B inhibit let-7 miRNA biogenesis in ESCs and

cancer, and it has been assumed that both proteins block let-7

expression through the same mechanism, by recruiting the

TUTase Zcchc11 (TUT4) in the cell cytoplasm to uridylate

pre-let-7 and target it for degradation. Moreover, these paralo-

gous proteins have been used interchangeably in several

in vitro assays (Heo et al., 2009). Our results provide evidence

that despite their high degree of homology, Lin28A and Lin28B

function through distinct mechanisms to block let-7 process-

ing, a finding that has broad implications for the development
graft tumors (day 30) derived from MDA-MB-231 and T47D cells. Error bars ±

sion levels in MDA-MB-231 xenograft tumors (day 30). However, inhibition of

expression levels were measured by qRT-PCR on tumors untreated or treated



Figure 6. Inhibition of Zcchc11 Expression Suppresses Tumor Growth of Lin28A- but Not Lin28B-Expressing Xenografts

(A) Xenograft experiments were performedwith a variety of different human cancer cell lines. Mice were treatedwith the indicated siRNA for five cycles starting on

day 15. For all cells lines tested, each treatment group consisted of five mice. Although inhibition of Lin28A or Lin28B suppressed tumor growth in the relevant

xenografts, inhibition of Zcchc11 inhibited growth only of Lin28A- but not Lin28B-expressing tumors. Error bars ± SEM (n = 3).

(B) Analysis of siRNA inhibition of Zcchc11 in xenograft tumors (day 30) derived from the indicated cells.

(C) Analysis of siRNA inhibition of Lin28B in xenograft tumors (day 30) derived from the indicated cells.

(D) Analysis of siRNA inhibition of Lin28A in xenograft tumors (day 30) derived from IGROV1 cells. mRNA expression levels weremeasured by qRT-PCRon tumors

untreated or treated with the indicated siRNA. Error bars ± SEM (n = 3).
of new cancer therapies and the potential use of Zcchc11

inhibitors in Lin28A-expressing tumors but not in Lin28B-

expressing tumors. This distinction derives from the differential

subcellular localization of these two proteins: Lin28A localizes

primarily to the cytoplasm, whereas Lin28B contains func-
C

tional nuclear localization signals and specifically localizes to

nucleoli.

Due to the differential subcellular localization of the two

proteins, we find that in human cancer cell lines, Lin28A and

Lin28B block let-7 processing at different steps of the
ell 147, 1066–1079, November 23, 2011 ª2011 Elsevier Inc. 1075



Figure 7. Lin28A and Lin28B Expression in Primary Human Cancers

(A) qRT-PCR analysis of Lin28A, Lin28B, and let-7a expression levels in normal and colon cancer tissues. Tumor samples were further classified into two groups

expressing either high Lin28A or Lin28B. Data expressed as mean ± SEM (n = 3).

(B) Immunohistochemistry for Lin28A and Lin28B and in situ hybridization for let-7a and U6 in normal colon tissues and colon adenocarcinomas. See also

Figure S4.
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miRNA-processing pathway. However, the steps at which let-7

processing is blocked by Lin28 in various different organisms

are controversial. A recently published report by Van Wyns-

berghe et al. proposes that Lin28 binds pri-let-7 and blocks

let-7 expression cotranscriptionally in C. elegans and disputes

earlier conclusions that Lin28 functions at steps further down-

stream in the let-7 biogenesis pathway (Lehrbach et al., 2009;

Van Wynsberghe et al., 2011). They also report that a very small

fraction of Lin28A in human ESCs (hESCs) localizes to the

nucleus and binds pri-let-7 miRNAs, although pre-let-7 is

bound abundantly (Van Wynsberghe et al., 2011). This is

consistent with our results that demonstrate that a small frac-

tion of Lin28A localizes to the nucleus in an Igrov1 cell line.

We also find that Lin28A binds pri-let-7 miRNA, but not as

much as Lin28B, and earlier reports have demonstrated that

purified Lin28A can inhibit the Microprocessor in vitro (Newman

et al., 2008; Viswanathan et al., 2008). Also, although our data

demonstrate that Lin28B-mediated repression of let-7 expres-

sion is Zcchc11 (TUT4) independent in multiple different cell

types, it remains possible that in certain contexts or cell types,

Lin28B may localize to the cytoplasm and utilize Zcchc11/TUT4

to repress let-7 biogenesis. For example, uridylated pre-let-7

was previously detected in Huh7 cells, and Lin28B is reportedly

localized to the cytoplasm in Huh7 cells (Guo et al., 2006; Heo

et al., 2008).

Our demonstration that the Microprocessor is excluded from

nucleoli raises the possibility that sequestration of certain pri-

miRNAs to nucleoli by specific RNA-binding proteins may prove

to be a more general strategy for the posttranscriptional control

of miRNA biogenesis. Previous reports have demonstrated

that nucleoli contain machinery responsible for modifying small

nucleolar RNAs, for example through RNA methylation or 30

uridylation. Whether these nucleolar mechanisms play a role in

pri-miRNA regulation remains to be determined (Boisvert et al.,

2007; Matera et al., 2007). It is possible that additional new

factors may be involved in sequestering and possibly degrading

and/or modifying pri-let-7 miRNAs in the nucleoli in a Lin28B-

dependent manner. The identification of such factors could

reveal new potential therapeutic targets aimed at restoring

let-7 expression in Lin28B-expressing cancers.

Our proof-of-concept studies with human breast and ovarian

cancer cell lines demonstrate that inhibition of Zccch11 may

represent a possible new therapeutic target for cancer. Indeed

knockdown of Zcchc11 effectively inhibits the tumorigenic

capacity and metastatic potential of human breast and ovarian

cancer cells and xenografts. Importantly, however, our data

also predict that the therapeutic potential of Zcchc11 inhibition

will be limited to Lin28A-expressing cancers. Although Lin28A

expression is relatively uncommon in several human cancer

cell lines, our analysis of primary human colon and breast cancer

indicates that upregulation of Lin28A or Lin28B occurs in a large

proportion of tumors with approximately equal frequency for
(C) qRT-PCR analysis of Lin28A, Lin28B, and let-7a in human normal and breast ca

either high Lin28A or Lin28B. Data expressed as mean ± SEM (n = 3).

(D) Lin28A, Lin28B, and let-7a expression levels in different breast cancer subtyp

(E) Correlation between Lin28A and Lin28B mRNA levels assessed by qRT-PCR

(F) Heatmap representation of Lin28A and Lin28B in carcinomas of different orig

C

each protein. Furthermore, expression of Lin28A or Lin28B

seems to distinguish different classes of breast cancers (Fig-

ure 7). Therefore, the identification of small-molecule inhibitors

of Zcchc11 may lead to the development of novel chemother-

apies for Lin28A-expressing cancers.

EXPERIMENTAL PROCEDURES

Cloning

Myc-Lin28A and -Lin28B were cloned into pBK-EF1. Lin28A, Lin28B, and

Lin28BDNLS#1 were cloned into pFLAG-CMV2 vector (Sigma). Lin28BD

NoLSDNLS#1 was generated by site-directed mutagenesis using the Quick

Change kit (Stratagene). Lin28A, Lin28B, Lin28BDNLS#1, and Lin28BD

NoLSDNLS#1 were cloned into CT-GFP-Topo (Invitrogen). NLS#1 and

NLS#2 oligos were annealed before ligating into CT-GFP-Topo. N-terminal

Cherry-DGCR8 fusion construct was generated by subcloning Cherry cDNA

into p3xFLAG-CMV14-DGCR8 (Gregory et al., 2004). Lin28A and Lin28B

were subcloned into Pet21 for His-tagged recombinant protein expression.

Pri-let-7g was previously reported (Viswanathan et al., 2008), Cloning primers

are listed in Table S1.

Transfection, Knockdowns, and Stable Cell Line Generation

All transfections were preformed with Lipofectamine (Invitrogen) per manufac-

turer’s instructions. shRNA constructs were generated using pLKO.1 Puro

(Addgene #8453) and pLKO.1 Hygro (Addgene #24150) vectors. The

sequences of the shRNA hairpins and siRNAs are listed in Table S2. Lentivirus

production, infection, and stable cell line selection are as described (Viswana-

than et al., 2009). siRNAs used in this study were as follows: siRNA negative

control (100 nM), (cat no. AM4611, Ambion Inc); siRNA Zcchc11#1 (100 nM)

(cat no. s23551, Ambion Inc); siRNA Zcchc11#2 (100 nM) (cat no. s23553,

Ambion Inc); siRNA Lin28B (100 nM) (cat no. s52477, Ambion Inc); siRNA

Lin28A (100 nM) (cat no. s36195, Ambion Inc).

Western Blotting

The following antibodies were used: Lin28A (Cell Signaling, 3978), Lin28B

(Cell Signaling, 4196), Zcchc11 (Protein Tech Group, 18980-1-AP), Zcchc11

(Imgenex, IMX-3587), DGCR8 (Protein Tech Group, 10996-1-AP), Fibrillarin

(Abcam, ab18380), and b-Tubulin (Abcam AB6046).

Subcellular Fractionation

Cellular fractionation was done using NE-PER Nuclear and Cytoplasmic

Extraction Kits (Pierce) per manufacturer’s instructions. Large-scale fraction-

ation was performed as described in the Extended Experimental Procedures.

EMSA

EMSA with purified His-Lin28A/B was performed as described but without

competitor yeast tRNA (Piskounova et al., 2008). Complexes were resolved

on native 3.5% or 5% polyacrylamide gels and visualized by autoradiography.

Band intensities of scanned gels were quantified using ImageJ software and

used to calculate percentage of probe bound. Graph-Pad Prism was used

to plot data. Percent active protein was determined using stoichiometric

binding reactions as described in Ryder et al. (2008). Hills equation for specific

binding with one site, Y=Bmax�X^h=ðKD
^h+X^hÞ, was used to calculate KD.

Colony Formation Assay

MDA-MB-231 cells and T47D cells were transfected with different siRNAs for

48 hr. Triplicate samples of 105 cells from each cell line were mixed 4:1 (v/v)

with 2.0%agarose in growthmedium for a final concentration of 0.4%agarose.

The cell mixture was plated on top of a solidified layer of 0.5% agarose in
ncer tissues. Tumor samples were further classified into two groups expressing

es.

with NF-kB phosphorylation status assessed by ELISA assay.

in measured by qRT-PCR.
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growthmedium. Cells were fed every 6 to 7 days with growth medium contain-

ing 0.4% agarose. The number of colonies was counted after 20 days.

Invasion Assays

We performed invasion assays in MDA-MB-231, and T47D breast cancer

cells were transfected with different siRNAs for 16 hr. Invasion of matrigel

was conducted by using standardized conditions with BDBioCoat growth

factor-reduced MATRIGEL invasion chambers (PharMingen). Assays were

conducted per manufacturer’s protocol, using 10% FBS as chemoattractant.

Noninvading cells on the top side of the membrane were removed, whereas

invading cells were fixed and stained with 40-6-diamidino-2-phenylindole

(DAPI, Vector Laboratories Inc.), 16 hr post-seeding.

Mouse Experiments

Xenograft experiments with human cancer cell lines are described in detail

the Extended Experimental Procedures. Briefly, cells were injected sub-

cutaneously in the right flank of athymic nude mice. Tumor growth was moni-

tored every 5 days. In Vivo Ready siRNAs (Ambion Inc.) were mixed with Invi-

vofectamine 2.0 liposomes (Ambion Inc) and injected intraperitoneally (i.p.) in

a volume of 100 ml at a dose of 5 mg/kg.

Human Tissues and RNAs

Thirty normal colon tissues and 45 colon adenocarcinomas were collected

from the translational pathology core laboratory of the Department of

Pathology at UCLA. All subjects gave informed consent, and the study was

approved by the UCLA Institutional Review Board. RNAs from 12 normal

mammary tissues and 33 breast cancer tissues were purchased from Origene

Inc. The ER, PR, and HER2 status for each of these breast carcinomas was

known. Additional RNAs were purchased from Origene (8 renal cell carci-

nomas, 8 hepatocellular carcinomas, 8 squamous cell lung carcinomas, 8

ovarial adenocarcinomas, 8 prostate adenocarcinomas, 8 papillary thyroid

carcinomas).

In Situ Hybridization and Immunohistochemistry

Sections of the colon adenocarcinomas and adjacent uninvolved tissues were

analyzed by in situ hybridization as described (Iliopoulos et al., 2009) with

modification (Extended Experimental Procedures). Double-DIG labeled

Mircury LNA Detection probe for the detection of hsa-let-7 (1800-15, Exiqon)

was used. Protocol for immunohistochemistry is described in detail the

Extended Experimental Procedures, with the following antibodies: Lin28A

(3978, Cell Signaling Technology) and Lin28B (LS-B3423, LSBio).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,

four figures, and two tables and can be found with this article online at

doi:10.1016/j.cell.2011.10.039.
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