28 research outputs found

    Maïdo observatory: a new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements

    Get PDF
    Since the nineties, atmospheric measurement systems have been deployed at Reunion Island, mainly for monitoring the atmospheric composition in the framework of NDSC/NDACC (Network for the Detection of <i>Stratospheric</i> Change/Network for the Detection of Atmospheric Composition Change). The location of Reunion Island presents a great interest because there are very few multi-instrumented stations in the tropics and particularly in the southern hemisphere. In 2012, a new observatory was commissioned in Maïdo at 2200 m above sea level: it hosts various instruments for atmospheric measurements, including lidar systems, spectro-radiometers and in situ gas and aerosol measurements. <br><br> This new high-altitude Maïdo station provides an opportunity:<br> 1. to improve the performance of the optical instruments above the marine boundary layer, and to open new perspectives on upper troposphere and lower stratosphere studies;<br> 2. to develop in situ measurements of the atmospheric composition for climate change surveys, in a reference site in the tropical/subtropical region of the southern hemisphere;<br> 3. to offer trans-national access to host experiments or measurement campaigns for focused process studies

    La Reunion Island (21S, 55.5E) SHADOZ/NDACC station: First re-processed ozonesonde data and comparisons with lidar measurementsat the Maïdo Observatory

    No full text
    International audienceLa Reunion Island (21 • S, 55.5 • E) SHADOZ/NDACC station: First reprocessed ozonesonde data and comparisons with lidar measurements at the Maïdo Observatory. La Reunion Island has been launching ozonesondes since Septembre 1992 and is one of the few stations with long term ozone profile measurements in the tropics. Over time changes in instrumentation, sensing solution, and operating procedures have affected the homogeneity of the data set prompting a reprocessing of the data record. We highlight our reprocessing efforts and quantify changes in the data regard with respect to the original data. From May to July 2015, the MORGANE (Maïdo ObservatoRy Gas and Aerosol Ndacc Experiment) campaign has been carried out at the Maïdo Observatory (2200 masl). 12 ECC ozonesondes have been launched and their ozone profiles compared with the tropospheric and stratospheric lidar measurements. These comparisons show an agreement better than 20% in the troposphere and 10% in the stratosphere and are within the limits of the instruments' accuracy. Total ozone column values are in good agreement, less than 10%, with those of the co-located SAOZ and Aura's OMI satellite instruments. Additional comparisons have been performed during MORGANE between P-T-U profiles measured by the French meteorological radiosonde, Modem M10, and participating lidars operating at the Maïdo Observatory. Preliminary analysis of temperature, water vapor and wind profiles data are presented

    Exploring fine-scale variability of stratospheric wind above the tropical la reunion island using rayleigh-mie doppler lidar

    No full text
    A unique Rayleigh-Mie Doppler lidar capable of wind measurements in the 5-50 km altitude range is operated routinely at La Reunion island (21° S, 55° E) since 2015. We evaluate instrument’s capacities in capturing fine structures in stratospheric wind profiles and their temporal and spatial variability through comparison with collocated radiosoundings and ECMWF analysis. Perturbations in the wind velocity are used to retrieve gravity wave frequency spectrum

    A trajectory-based estimate of the tropospheric ozone column using the residual method

    Get PDF
    We estimate the tropospheric column ozone using a forward trajectory model to increase the horizontal resolution of the Aura Microwave Limb Sounder (MLS) derived stratospheric column ozone. Subtracting the MLS stratospheric column from Ozone Monitoring Instrument total column measurements gives the trajectory enhanced tropospheric ozone residual (TTOR). Because of different tropopause definitions, we validate the basic residual technique by computing the 200-hPa-to-surface column and comparing it to the same product from ozonesondes and Tropospheric Emission Spectrometer measurements. Comparisons show good agreement in the tropics and reasonable agreement at middle latitudes, but there is a persistent low bias in the TTOR that may be due to a slight high bias in MLS stratospheric column. With the improved stratospheric column resolution, we note a strong correlation of extratropical tropospheric ozone column anomalies with probable troposphere-stratosphere exchange events or folds. The folds can be identified by their colocation with strong horizontal tropopause gradients. TTOR anomalies due to folds may be mistaken for pollution events since folds often occur in the Atlantic and Pacific pollution corridors. We also compare the 200-hPa-to-surface column with Global Modeling Initiative chemical model estimates of the same quantity. While the tropical comparisons are good, we note that chemical model variations in 200-hPa-to-surface column at middle latitudes are much smaller than seen in the TTOR

    Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005–2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products

    Get PDF
    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005–2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela/Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific/eastern Indian Ocean; (2) equatorial Americas (San Cristóbal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EP/TOMS comparisons (1998–2004; Earth-Probe/Total Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMI/MLS) show that the satellite-derived column amount averages 25% low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2= 0.5–0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites

    Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Jülich Ozone Sonde Intercomparison Experiment (JOSIE)

    No full text
    [1] Since 1996, quality assurance experiments of electrochemical concentration cell (ECC) ozonesondes of two different model types (SPC-6A and ENSCI-Z) have been conducted in the environmental simulation facility at the Research Centre Juelich within the framework of the Juelich Ozone Sonde Intercomparison Experiment (JOSIE). The experiments have shown that the performance characteristics of the two ECC-sonde types can be significantly different, even when operated under the same conditions. Particularly above 20 km the ENSCI-Z sonde tends to measure 5-10% more ozone than the SPC-6A sonde. Below 20 km the differences are 5% or less, but appear to show some differences with year of manufacture. There is a significant difference in the ozone readings when sondes of the same type are operated with different cathode sensing solutions. Testing the most commonly used sensing solutions showed that for each ECC-manufacturer type the use of 1.0% KI and full buffer gives 5% larger ozone values compared with the use of 0.5% KI and half buffer, and as much as 10% larger values compared with 2.0% KI and no buffer. For ozone sounding stations performing long term measurements this means that changing the sensing solution type or ECC-sonde type can easily introduce a change of +/- 5% or more in their records, affecting determination of ozone trends. Standardization of operating procedures for ECC-sondes yields a precision better than +/-(3-5)% and an accuracy of about +/-(5-10)% up to 30 km altitude

    The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology

    No full text
    This is the second 'reference' or 'archival' paper for the SHADOZ (Southern Hemisphere Additional Ozonesondes) network and is a follow-on to the recently accepted paper with similar first part of title. The latter paper compared SHADOZ total ozone with satellite and ground-based instruments and showed that the equatorial wave-one in total ozone is in the troposphere. The current paper presents details of the wave-one structure and the first overview of tropospheric ozone variability over the southern Atlantic, Pacific and Indian Ocean basins. The principal new result is that signals of climate effects, convection and offsets between biomass burning seasonality and tropospheric ozone maxima suggest that dynamical factors are perhaps more important than pollution in determining the tropical distribution of tropospheric ozone. The SHADOZ data at () are setting records in website visits and are the first time that the zonal view of tropical ozone structure has been recorded - thanks to the distribution of the 10 sites that make up this validation network

    SHADOZ in the Aura Era

    No full text
    We present comparisons of observed tropical and sub-tropical ozone from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project with satellite measurements using Aura's Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) instruments. Satellite products of total and derived tropospheric column ozone from OMI and profiles of ozone in the UT/LS region from MLS are used
    corecore