51 research outputs found

    Análisis del crecimiento en frutos de tomate (Lycopersicon esculentum Mill.) cultivados bajo invernadero.

    Get PDF
    El patrón de crecimiento es general en plantas anuales que se desarrollan en un ambiente óptimo, sin embargo, hay gran variación en la magnitud de los valores de peso seco, en la simetría de la curva en la escala de tiempo en que este sucede. En este artículo se presenta el análisis del crecimiento de tres cultivares de tomate (Lycopersicon esculentum Mill.) bajo condiciones de invernadero. Los cultivares evaluados fueron Sofia, Bravona y Granitio, en la localidad de Sutamarchán (Boyacá, Colombia). Desde el momento de la floración hasta la cosecha, se tomaron semanalmente, veinte frutos de cada cultivar, en los que se determinó el peso seco, el diámetro polar y transversal y los sólidos solubles totales, además, se calculó la tasa de crecimiento absoluto y relativo, y la relación diámetro polar/diámetro transversal. Se realizó un análisis de regresión para obtener los modelos de crecimiento. El peso seco, el diámetro transversal y polar mostraron una curva sigmoidea característica. Los sólidos solubles totales disminuyeron desde el inicio de las mediciones hasta el intervalo entre 29 a 36 días después de floración (ddf), después, los valores de esta variable se mantuvieron en aumento. La tasa de crecimiento relativo disminuyó fuertemente desde 8-22 ddf en los cultivares Sofía y Bravona, pero Granitio presentó una reducción menos drástica a lo largo del desarrollo del fruto. Los modelos de simulación obtenidos mostraron una alta correlación con los respectivos datos observados para el crecimiento del frutoTomate-Solanum lycopersicu

    Prevalence of Frailty in European Emergency Departments (FEED): an international flash mob study

    Get PDF
    Introduction Current emergency care systems are not optimized to respond to multiple and complex problems associated with frailty. Services may require reconfiguration to effectively deliver comprehensive frailty care, yet its prevalence and variation are poorly understood. This study primarily determined the prevalence of frailty among older people attending emergency care. Methods This cross-sectional study used a flash mob approach to collect observational European emergency care data over a 24-h period (04 July 2023). Sites were identified through the European Task Force for Geriatric Emergency Medicine collaboration and social media. Data were collected for all individuals aged 65 + who attended emergency care, and for all adults aged 18 + at a subset of sites. Variables included demographics, Clinical Frailty Scale (CFS), vital signs, and disposition. European and national frailty prevalence was determined with proportions with each CFS level and with dichotomized CFS 5 + (mild or more severe frailty). Results Sixty-two sites in fourteen European countries recruited five thousand seven hundred eighty-five individuals. 40% of 3479 older people had at least mild frailty, with countries ranging from 26 to 51%. They had median age 77 (IQR, 13) years and 53% were female. Across 22 sites observing all adult attenders, older people living with frailty comprised 14%. Conclusion 40% of older people using European emergency care had CFS 5 + . Frailty prevalence varied widely among European care systems. These differences likely reflected entrance selection and provide windows of opportunity for system configuration and workforce planning

    Delicate Balance among Three Ferroic Polymorphic Phases in BiFeO3-BiMnO3-PbTiO3

    No full text
    International audiencePhase-change functional responses can be obtained in perovskite solid solutions at structural instabilities involving multiferroic states, a very promising approach for realizing magnetoelectric effects at room temperature. A line of multiferroic morphotropic phase boundaries (MPBs) has been described within the phase diagram of the BiFeO3-BiMnO3-PbTiO3 ternary system, in which an evolution from Cc/P4mm-type (polar/polar) to Pnma/P4mm-type (antipolar/polar) MPBs takes place. Coexistence of the three polymorphs results in a small region, where distinctive phase-change magnetoelectric responses are anticipated. In this work, all three polymorphs were obtained, either isolated or in phase coexistence with varying percentages, by tailoring the cooling profile after high-temperature annealing in a small compositional range. The perovskite structure was characterized, and temperature-dependent magnetic and electrical characterizations were carried out to define the ferroic orders and crystal physicochemical properties of the three polymorphs. Results revealed the close interplay among the crystal structure, point defects, and multiferroism in this small region, where the delicate balance among the three polymorphs is shown. Additionally, the effect of size reduction across the submicron range, down to the nanoscale, is described and discussed

    Exploring resource recovery potentials for the aerobic granular sludge process by mass and energy balances - energy, biopolymer and phosphorous recovery from municipal wastewater

    No full text
    Municipal wastewater cannot any longer be perceived as a waste stream because it contains water, energy, fertilizer and other products that can be recovered with innovative technologies in so called ‘water resource factories’. Therefore a paradigm shift has been proclaimed to design water resource factories in the future that feed into a circular economy. The rapid development of new resource recovery technologies requires a solid analysis prior to their integration into treatment processes to understand more about their potential to contribute to more circular urban water management practices. Mass and energy balances are an excellent method to model resource recovery potentials of innovative processes at an early design stage because they allow quantifying recoverable resources as well as trade-offs between possible recovery technology choices. We modelled a real wastewater treatment plant which uses aerobic granular sludge treatment and is currently operated with no on-site resource recovery. Then, 5 different possible process designs that would recover chemical oxygen demand (COD) as energy and/or extracellular polymeric substances (EPS), and phosphorous (P) as struvite have been modelled. The integration of anaerobic digestion for subsequent electricity and heat generation from methane provides the possibility to recover on-site a rather small fraction of influent-COD as energy. But if this is combined with chemically enhanced primary treatment (CEPT), almost one third of the influent-COD may be recovered. Simultaneous energy and EPS recovery may lead to trade-offs as CEPT integration for maximum energy recovery may halve the EPS recovery potential but would increase the overall influent-COD recovery rate. Struvite fertilizer recovery integration may only recover a small fraction of influent-P and is therefore questionable when other P recovery options are possible that aim for higher recovery rates. The fertilizer recovery potential may be significantly decreased by EPS recovery since the latter contain P. This study helps to understand how aerobic granular sludge based treatment processes can be designed as water resource factories. Mass and energy balances can be conducted at a very early process design stage and results may be used to identify promising process designs for subsequent more in depth techno-economic or environmental impact assessments.BT/Biotechnology and SocietyBT/Environmental Biotechnolog

    A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity

    Get PDF
    International audienceThere is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3 -BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3 -BiMnO3 -PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses. © The Author(s) 2016

    Influence of charged walls and defects on DC resistivity and dielectric relaxations in Cu-Cl boracite

    Get PDF
    Charged domain walls form spontaneously in Cu-Cl boracite on cooling through the phase transition. These walls exhibit changed conductivity compared to the bulk and motion consistent with the existence of negative capacitance. Here, we present the dielectric permittivity and DC resistivity of bulk Cu-Cl boracite as a function of temperature (-140 {\deg}C to 150 {\deg}C) and frequency (1 mHz to 10 MHz). The thermal behaviour of the two observed dielectric relaxations and the DC resistivity is discussed. We propose that the relaxations can be explained by the existence of point defects, most likely local complexes created by a change of valence of Cu and accompanying oxygen vacancies. In addition, the sudden change in resistivity seen at the phase transition suggests that conductive domain walls contribute significantly to the conductivity in the ferroelectric phase.Comment: 9 pages, 4 figure

    The SPPD-WRF framework: A novel and holistic methodology for strategical planning and process design of water resource factories

    Get PDF
    This paper guides decision making in more sustainable urban water management practices that feed into a circular economy by presenting a novel framework for conceptually designing and strategically planning wastewater treatment processes from a resource recovery perspective. Municipal wastewater cannot any longer be perceived as waste stream because a great variety of technologies are available to recover water, energy, fertilizer, and other valuable products from it. Despite the vast technological recovery possibilities, only a few processes have yet been implemented that deserve the name water resource factory instead of wastewater treatment plant. This transition relies on process designs that are not only technically feasible but also overcome various non-technical bottlenecks. A multidimensional and multidisciplinary approach is needed to design water resource factories (WRFs) in the future that are technically feasible, cost effective, show low environmental impacts, and successfully market recovered resources. To achieve that, the wastewater treatment plant (WWTP) design space needs to be opened up for a variety of expertise that complements the traditional wastewater engineering domain. Implementable WRF processes can only be designed if the current design perspective, which is dominated by the fulfilment of legal euent qualities and process costs, is extended to include resource recovery as an assessable design objective from an early stage on. Therefore, the framework combines insights and methodologies from different fields and disciplines beyond WWTP design like, e.g., circular economy, industrial process engineering, project management, value chain development, and environmental impact assessment. It supports the transfer of the end-of-waste concept into the wastewater sector as it structures possible resource recovery activities according to clear criteria. This makes recovered resources more likely to fulfil the conditions of the end-of-waste concept and allows the change in their definition from wastes to full-fledged products.BT/Biotechnology and SocietyBT/Environmental Biotechnolog
    corecore