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Charged domain walls form spontaneously in Cu-Cl boracite on cooling through the phase transition. These walls

exhibit changed conductivity compared to the bulk and motion consistent with the existence of negative capacitance.

Here, we present the dielectric permittivity and DC resistivity of bulk Cu-Cl boracite as a function of temperature (-

140 C to 150 C) and frequency (1 mHz to 10 MHz). The thermal behaviour of the two observed dielectric relaxations

and the DC resistivity is discussed. We propose that the relaxations can be explained by the existence of point defects,

most likely local complexes created by a change of valence of Cu and accompanying oxygen vacancies. In addition, the

sudden change in resistivity seen at the phase transition suggests that conductive domain walls contribute significantly

to the conductivity in the ferroelectric phase.

The boracites form a class of ferroelectrics with the gen-

eral formula M3B7O13X, where M is a metal and X a halide.

As improper ferroelectrics, their interesting crystallography

and phase transitions attracted attention in the 1960’s, 70’s

and 80’s with the first coupled magnetoelectric multiferroic

switching being demonstrated by Ascher et al.1 in Ni3B7O13I

and with observations indicative of potential for electro-optic2

and pyroelectric applications3–5. However, the growth of

large single crystals6,7 is difficult and with the development of

perovskite oxide ceramic materials possessing diverse func-

tional properties, interest in the boracite family subsequently

waned. Recently, however, the discoveries surrounding im-

proper ferroelectrics8–10 and their associated charged domain

walls11,12 has rekindled interest in the potential of boracites

as functional materials. The charged domain walls in Cu-Cl

boracite are particularly remarkable: they present either en-

hanced conductivity (in 90 tail-to-tail walls) or reduced con-

ductivity (in 90 head-to-head walls) relative to the bulk12.

Charged walls exist spontaneously in Cu-Cl boracite, to ac-

commodate for the spontaneous shear strain developing at the

phase transition, but they can also be injected and repositioned

by stress and electric field, making them interesting for the fu-

ture of nanoelectronics13,14. Uniquely, head-to-head charged

walls have been shown to have an unconventional electrostatic

response (moving in the opposite direction to that expected

under an applied electric field), consistent with the existence

a)Also at School of Mathematics and Physics, Queen’s University Belfast,

Belfast, BT7 1NN, United Kingdom.
b)Also at Maxwell Centre, Cavendish Laboratory, University of Cambridge,

Cambridge, United Kingdom

of negative capacitance11. This discovery of new properties at

domain walls prompts our understanding of the intrinsic prop-

erties of boracites to be revisited.

The characterisation of the dielectric properties is particularly

important, as it pertains to the unusual electrostatic response

of charged domain walls11, as well as playing a role in the

piezoelectric and ferroelectric responses. Here, we focus on

the characterisation of the dielectric dispersion and resistivity,

as functions of temperature, of the same Cu-Cl boracite sam-

ple in which the conductivity of charged walls12 and negative

capacitance were measured11. We observe two dielectric re-

laxations and a strong change of resistivity at the phase transi-

tion (90 C) between the high-temperature piezoelectric phase

and the low-temperature ferroelectric phase15.

The Cu3B7O13Cl single-crystal was prepared by the phase

transport technique7. The crystal is about 5x5x1mm3 mir-

ror polished with faces parallel. The sample is transparent

with a faint blue coloration. The transmission spectrum of

a small piece of the sample was measured on a PerkinElmer

Lambda900 spectrometer between 300 nm and 900 nm. The

impedance of this crystal was measured at frequencies be-

tween 1 mHz and 10 MHz and a driving voltage of 0.5V in

a large temperature range of -140 C to 150 C , spanning the

piezoelectric-ferroelectric phase transition, with steps of 10 or

20 C using a Novocontrol Concept 40 dielectric spectrometer

with the unpoled sample directly contacted with parallel brass

plates freshly polished to ensure good contacts and mounted

with a mechanical spring. The complex dielectric permittiv-

ity ε∗ = ε ′+ iε ′′ and resistivity ρ∗ = ρ ′+ iρ ′′ were calculated

classically from the complex impedance.

Figure 1 presents the frequency dispersion of ε ′ and ε ′′ at dif-

ferent temperatures. Piezoelectric resonances are observed
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Figure 1. Frequency dependence of the dielectric permittivity (a)

real part, (b) imaginary part and (c) Cole-Cole plot. * highlight

the two relaxations in (b) and (c) The colour lines are separated by

20 C except close to the phase transition where they are separated by

10 C .

at frequencies above 500 kHz. With decreasing frequency,

two relaxations can be clearly observed at frequencies around

1 kHz and 100 kHz at 150 C. Upon further lowering of fre-

quencies, the real and imaginary parts of the dielelectric per-

mittivity increase rapidly. This increase is consistent with

the existence of a resistor in series. The real and imaginary

part were fitted simultaneously for frequencies below piezo-

electric resonances for all temperatures. The relaxations were

modelled as a Cole-Cole relaxation, and a term was added to

describe the low-frequency conductive behaviour, as is com-

monly done in ferroelectric materials16

ε
∗ =

∆ε1

1+ i( f/ fr,1)a1
+

∆ε2

1+ i( f/ fr,2)a2
+

σ

ε0(i2π f )n
+ ε∞(1)

where ∆ε1 and ∆ε2 are the amplitudes of the relaxations, fr,1

and fr,2 the two characteristic relaxation frequencies, a1 and

a2 two exponents, σ is the DC conductivity, n is an empirical

constant and ε∞ is the permittivity at high frequencies. Fit-

ting the two relaxations with the empirical Havriliak-Negami

function17 improves marginally the quality of the fit, whereas

fitting with two simple Debye relaxations decreases the qual-

ity of the fit with respect to the conduction-dominated low-

frequency part. All fits lead to similar results regarding the

changes in amplitude and frequencies of the relaxations (Sup-

plementary Fig. S1 and S2). The results of fitting at low tem-

peratures (below -50 C ) was not considered since the two re-

laxations have moved towards low frequencies and it becomes

difficult to differentiate them from one another and from the

low frequency conduction. The fitting parameters for the two

relaxations, on the one hand, and the DC conductivity, on the

other hand, are presented in Fig. 2 and Fig. 3, respectively,

and will be discussed separately.

Figure 2 presents the fitted parameters using the Cole-Cole

model for the two relaxations. Both relaxations have sim-

ilar thermal evolution: the relaxation frequencies (Fig. 2a)

continuously increase with increasing temperature, the ampli-

tudes of the two relaxations display a jump at the phase tran-

sition(Fig. 2b) and the exponents a1 and a2 remain equal to

0.8 across the temperature range investigated (Supplementary

Fig. S2).

The smooth continuous increase in relaxation frequencies is

a strong indication that these relaxations are not related to

Maxwell-Wagner polarisation. Indeed, the frequency asso-

ciated with this type of relaxation are inversely proportional

to the resistivity and dielectric permittivity, and both of these

quantities display a sharp increase at the phase transition. This

would lead to a sharp decrease of the relaxation frequencies at

the phase transition which is absent here.

The temperature evolution of relaxation frequencies is often

modelled using the Vogel-Fulcher law, describing an activated

process of activation energy Ea and freezing below the tem-

perature Tf

f = f0e
−

Ea
kB(T−Tf ) (2)

where kB is the Boltzmann constant and f0 the attempt fre-

quency. The continuous lines in Fig. 2(a) represent the results

of the fit to the measured data. Fitting a Vogel-Fulcher law is

never trivial18, but a few things can be said based on the fitted

values shown in Table I.

The freezing temperatures were found to be ∼ 0 K (within

error), suggesting that the processes leading to the relaxations

will not freeze. Fixing the freezing temperature to 0 K, i.e.

assuming an Arrhenius law, leads to similar results with ac-

tivation energies that are comparable to the one observed for

the lower frequency relaxation, but still within the error asso-

ciated with the Vogel-Fulcher fits.

A recent study15, focusing on the elastic properties of this
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Tc

(a)

(b)

Figure 2. Fitting parameters of relaxations (a) relaxation frequency,

(b) dielectric strength. The dark green circles represent the high fre-

quency relaxation and the light orange squares the lower frequency

one.

sample, identified a relaxation process freezing at ∼ 40 K,

which was attributed to strain relaxation around local ferro-

electric dipoles or polarons. The low freezing temperature

observed could be broadly consistent with our observations;

however, the minimum activation energy (∼ 0.02 eV) associ-

ated with the strain process is more than an order of magnitude

lower than that observed in this work. The differences in ac-

Tc

Δρ

Tc

(a)

(b)

Figure 3. Thermal evolution of resistivity (a) as a function of tem-

perature (b) as a function of the inverse of temperature. Light blue

squares represent the value of resistivity measured at 1mHz. Dark

blue circles depict the value obtained from fitting. The exponent n is

presented in the inset of (a).

tivation energies and freezing behaviour suggest different mi-

croscopic origins for the relaxation processes reported in the

present work and the one previously observed. Specifically,

the absence of freezing of the relaxation observed here sug-

gests that the reorientations of local dipoles are independent.

Indeed, in a process modelled by an Arrhenius law, there is no
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4

Table I. Fitting parameters of the Vogel-Fulcher analysis. Relaxation

1 and 2 correspond to the relaxation occurring at the highest and

lowest frequency, respectively.

Tf (K) Ea (eV) f0 (Hz)

Relaxation 1 −9±13 0.59±0.06 (8.0±10.0) ·1010

Relaxation 2 −1±10 0.64±0.05 (1.8±5.3) ·1013

Figure 4. Transmittance of the Cu-Cl boracite sample (photo as inset)

assumption of collective response to the applied electric field.

Notably, the activations energies for both relaxations are

the same within error (∼ 0.6 eV). This suggests a common

origin. Domain wall motion can largely be excluded, as both

relaxation phenomena persist above Tc. While a contribution

from domains/domain walls below Tc cannot be completely

excluded, it is certainly not the main relaxation phenomenon

at play.

Perhaps the most classical origin of dielectric relaxations in

dielectrics, point defects19–21 are the most likely mechanism

for the observed dielectric relaxations. Indeed, the order of

magnitude of the activation energies is very similar to that

reported for defect states in perovskites22. UV-visible opti-

cal spectroscopy (Fig. 4) indicates the existence of states in

the band gap, strongly supporting point defects as a source of

the dielectric relaxations. The colour of the sample and the

band in the transmission spectrum at 490-540nm23 both sug-

gest a change of valence of copper Cu2+
→ Cu+. To conserve

charge neutrality, this change of valence is likely to be asso-

ciated with positively charged point defects, such as oxygen

vacancies V••

O .

Point defects can lead to dielectric relaxations in several

ways: creating a local dipole (or bound charge) that can be

reoriented by the electric field, providing a free charge carrier

that is moved by the electric field or through the coupling to

phonons24 In parenthesis, defect mobility leads to dielectric

relaxations in some cases, but have usually much higher acti-

vation energies (∼ 2 eV in boracite glass25) and are rarely ob-

served in ferroelectrics around room temperature. The similar

activation energies suggest that the two relaxations “experi-

ence” a similar energy landscape. On the other hand, the dif-

ference in f0 indicates that, at infinite temperature, the energy

barrier between the minima is overcome at different frequen-

cies. This could be explained with different effective masses

of the dipoles or charges or by the coupling to two different

phonon modes.

For example, the change of valence in copper creates a local

dipole but can also lead to polaronic hopping between sites.

These two mechanisms would probably have similar energy

landscapes, but the dipole reorientation and polaron hopping

would have different effective masses. Alternatively, the ex-

istence of anisotropy in some of the B-FO tetrahedra could

create relaxations with different effective masses. Indeed, in

half of the tetrahedra, boron is not located at the centre. This

off-centring leads to the existence of local dipoles (even in

the high temperature phase) pointing towards chlorine. The

position of a V••

O vacancy would have a strong influence on

this local B-O dipole and in turn change the effective mass

of the dipole created directly by V••

O . A third option would

be a defect complex formed of Cu+ and V••

O ; this seems par-

ticularly likely, in terms of keeping the electroneutrality of

the sample. This complex would have one activation energy,

but the Cu+- dipoles and V••

O would again have different ef-

fective masses. In this discussion, the polarisability of the de-

fects was the main mechanism considered; however, defects

can also lead to dielectric relaxation through the coupling to

phonon modes. We believe that this coupling is less likely

in the present case as the phase transition does not affect the

temperature dependence of the relaxation frequency, whereas

phonons would be strongly affected. At this point and by anal-

ogy with acceptor- or donor-doped perovskite26,27 and the ob-

served decrease in formation energy when a defect complex

is created28,29, we consider that a charge transfer between the

two defects is the most likely phenomenon.

Below the frequencies of the dielectric relaxations, a strong

increase in both ε ′ and ε ′′ is observed. It is attributed to the DC

conductivity of the sample, which can be determined in two

different ways: (i) as a result of fitting to the dielectric dis-

persion data and (ii) considering the low-frequency (1 mHz)

value of the resistivity ρ (Supplementary Figure S3a). In both

cases, the temperature range was limited to -50 C and above.

Figure 3 presents the thermal behaviour of resistivity deter-

mined both ways. The values are in excellent agreement and

are of the order of magnitude of the resistivity previously re-

ported in Cu-Cl boracite30, which suggests good reliability of

our data.

At the phase transition, a clear jump in resistivity (∆ρ) of

about an order of magnitude is observed. A similar step was

seen in the exponent n, determined in the fitting procedure

(see inset of Fig. 3(a)). This abrupt change is not an arte-

fact, since it can be observed directly on the Cole-Cole plot

(Fig. 1c): there is a clear and sudden change in the low fre-

quency impedance across the phase transition. Schmid and

Petermann30 also reported a sudden change in resistivity at

the phase transition, although they observed that the sign of
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∆ρ depended on the sample and the poling state. This led

the authors, in 1977, to conclude that “this may possibly be

due to some spurious domain orientation [. . . ] or to a higher

conduction along the walls”, even though domain wall con-

duction had not been experimentally observed in any ferro-

electric system at that time. We observed a similar influ-

ence of the domain pattern in the DC resistivity measured at

room temperature for the same sample after different thermal

treatment (Supplementary Fig. S2b and S4): the highest re-

sistivity being more than twice as large as the smallest one.

However, now that enhanced or depressed conduction at do-

main walls11,12 has been previously observed experimentally

through spatially resolved current mapping, it is more likely

that the domain walls influence predominantly the DC resis-

tivity rather than “spurious domains”, since single domains

samples consistently show higher resistivity than multidomain

ones30.

In addition to its abrupt change at the phase transition, the DC

resistivity decreases with increasing temperature, which indi-

cates an insulator/semiconductor behaviour. It is common to

study the temperature dependence to get insight into the phys-

ical mechanism responsible for carrier transport. Since Cu-Cl

boracite has an optical band gap of 4 eV and the observation

of defects state in the band gap, a change in resistivity due

to activated hopping between potential wells seems the most

likely mechanism. In this case, resisitivity, follows an Arrhe-

nius law:

ρDC = ρ0e
Ea

kBT (3)

where ρ0 is a prefactor representing either the resistivity at at

infinite temperature, Ea the activation energy and kB the Boltz-

mann constant.

The activation energies were found to differ on each side

of the phase transition with E
ρ
a = 0.42± 0.04 eV below and

E
ρ
a = 0.72±0.08 eV above the transition, respectively. These

values of activation energies are of the same order of magni-

tude as the values reported in the literature for Cu-Cl boracite,

although we observe the higher activation energy above TC.

Additionally, they are also of the same order as the one re-

ported for the temperature dependence of the electronic con-

ductivity driven by charge transfer between Cu+ and Cu2+ in

a halide double perovskite31.

The thermal dependences of the resisitivity are of the same

order of magnitude as the activation energies compared to the

the one observed for the two dielectric relaxations: it would be

natural to assume a similar origin. To explain the difference

on each side of the phase transition, it could be hypothesized

(see Supplementary Note 1) that, below the phase transition,

the decrease in activation energy is due to the existence of

conducting domain walls, that tend to display intrinsic semi-

conducting behaviour32–34.

In summary, the impedance spectra of Cu-Cl boracite were

measured at different temperatures. Two dielectric relaxations

and an increase of permittivity at low frequencies, consistent

with the existence of a series resistor, were found. The study

of the temperature evolution of the two relaxations and the

low-frequency conductivity revealed the role of point defects.

Based on the similarity of activation energies (∼ 0.6 eV) and

differences in attempt frequencies ( f0 = 7− 9 · 1012 Hz), we

suggest that defect complexes, related to a change of valence

of Cu and oxygen vacancies, are the most likely. Below the

ferroelectric phase transition temperature, a decrease in resis-

tivity is observed, consistent with the appearance of the con-

ductive domain walls known in this system.

SUPPLEMENTARY MATERIAL

See supplementary material for the difference between De-

bye and Havriliak-Negami fitting, the effect of thermal treat-

ment on the complex dielectric permittivity and the resistivity

dispersion.
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