1,446 research outputs found

    Searches for Physics Beyond the Standard Model at Colliders

    Full text link
    All experimental measurements of particle physics today are beautifully described by the Standard Model. However, there are good reasons to believe that new physics may be just around the corner at the TeV energy scale. This energy range is currently probed by the Tevatron and HERA accelerators and selected results of searches for physics beyond the Standard Model are presented here. No signals for new physics have been found and limits are placed on the allowed parameter space for a variety of different particles.Comment: Proceedings for 2007 Europhysics Conference on High Energy Physics, Manchester, July 200

    Where the Sidewalk Ends: Jets and Missing Energy Search Strategies for the 7 TeV LHC

    Get PDF
    This work explores the potential reach of the 7 TeV LHC to new colored states in the context of simplified models and addresses the issue of which search regions are necessary to cover an extensive set of event topologies and kinematic regimes. This article demonstrates that if searches are designed to focus on specific regions of phase space, then new physics may be missed if it lies in unexpected corners. Simple multiregion search strategies can be designed to cover all of kinematic possibilities. A set of benchmark models are created that cover the qualitatively different signatures and a benchmark multiregion search strategy is presented that covers these models.Comment: 30 pages, 8 Figures, 3 Tables. Version accepted at JHEP. Minor changes. Added figur

    Real-time lossless compression of multibeam echosounder water column data

    Get PDF
    Multibeam echosounders can generate vast amounts of data when recording the complete water column, which poses logistic, economic and technical challenges. Lossy data compression can reduce data size up to one or two orders of magnitude, but often at the expense of significant image distortion. Lossless compression ratios tend to be modest and at a high computing cost. In this work we test a high-performance data compression algorithm, FAPEC, initially developed for Space data communications with low computing requirements. FAPEC provides good compression ratios and supports tailored pre-processing stages. Here we show its advantages over standard and high-end lossless compression solutions currently available, both in terms of ratios and speedR+D work on FAPEC is supported by the ESA Business Incubation Programme through Barcelona Activa, by the MINECO (Spanish Ministry of Economy) – FEDER through grants ESP2014-55996-C2-1-R, AYA2014-59084-P and MDM-2014-0369 of ICCUB (Unidad de Excelencia ‘María de Maeztu’), and by the AGAUR. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 658358 (D. Amblas). The authors acknowledge funding received from the Spanish RTD grant NUREIEV (CTM2013-44598-R) and from EC contract MIDAS (GA-603418). GRC Geociencies Marines is recognized by Generalitat de Catalunya as an excellence research group (ref. 2014 SGR 1068)

    Hadronic production of squark-squark pairs: The electroweak contributions

    Get PDF
    We compute the electroweak (EW) contributions to squark--squark pair production processes at the LHC within the framework of the Minimal Supersymmetric Standard Model (MSSM). Both tree-level EW contributions, of O(alpha_s alpha + alpha^2), and next-to-leading order (NLO) EW corrections, of O(alpha_s^2 alpha), are calculated. Depending on the flavor and chirality of the produced quarks, many interferences between EW-mediated and QCD-mediated diagrams give non-zero contributions at tree-level and NLO. We discuss the computational techniques and present an extensive numerical analysis for inclusive squark--squark production as well as for subsets and single processes. While the tree-level EW contributions to the integrated cross sections can reach the 20% level, the NLO EW corrections typically lower the LO prediction by a few percent.Comment: 36 pages, 18 figure

    Gaia Early Data Release 3: The astrometric solution

    Get PDF
    [Context] Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3-21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. [Aims] We describe the input data, the models, and the processing used for the astrometric content of Gaia EDR3, as well as the validation of these results performed within the astrometry task. [Methods] The processing broadly followed the same procedures as for Gaia DR2, but with significant improvements to the modelling of observations. For the first time in the Gaia data processing, colour-dependent calibrations of the line- and point-spread functions have been used for sources with well-determined colours from DR2. In the astrometric processing these sources obtained five-parameter solutions, whereas other sources were processed using a special calibration that allowed a pseudocolour to be estimated as the sixth astrometric parameter. Compared with DR2, the astrometric calibration models have been extended, and the spin-related distortion model includes a self-consistent determination of basic-angle variations, improving the global parallax zero point. [Results] Gaia EDR3 gives full astrometric data (positions at epoch J2016.0, parallaxes, and proper motions) for 1.468 billion sources (585 millionwith five-parameter solutions, 882 million with six parameters), and mean positions at J2016.0 for an additional 344 million.Solutions with five parameters are generally more accurate than six-parameter solutions, and are available for 93% of the sources brighter than the 17th magnitude. The median uncertainty in parallax and annual proper motion is 0.02-0.03 mas at magnitude G = 9-14, and around 0.5 mas at G = 20. Extensive characterisation of the statistical properties of the solutions is provided, including the estimated angular power spectrum of parallax bias from the quasars.This work was financially supported by the European Space Agency (ESA) in the framework of the Gaia project; the German Aerospace Agency (Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0901, 50QG1401 and 50QG1402; the Spanish Ministry of Economy (MINECO/FEDER, UE) through grants ESP2016-80079-C2-1-R, RTI2018-095076-B-C21 and the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia “María de Maeztu”) through grants MDM-2014-0369 and CEX2019-000918-M; the Swedish National Space Agency (SNSA/Rymdstyrelsen); and the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/N001117/1, ST/S000089/1, ST/S000976/1, ST/S001123/1, ST/S001948/1, ST/S002103/1, and ST/V000969/1

    Bigger, Better, Faster, More at the LHC

    Get PDF
    Multijet plus missing energy searches provide universal coverage for theories that have new colored particles that decay into a dark matter candidate and jets. These signals appear at the LHC further out on the missing energy tail than two-to-two scattering indicates. The simplicity of the searches at the LHC contrasts sharply with the Tevatron where more elaborate searches are necessary to separate signal from background. The searches presented in this article effectively distinguish signal from background for any theory where the LSP is a daughter or granddaughter of the pair-produced colored parent particle without ever having to consider missing energies less than 400 GeV.Comment: 26 pages, 8 Figures. Minor textual changes, typos fixed and references adde

    Gaia Early Data Release 3:Modelling and calibration of Gaia's point and line spread functions

    Get PDF
    Context: The unprecedented astrometric precision of the Gaia mission relies on accurate estimates of the locations of sources in the Gaia data stream. This is ultimately performed by point spread function (PSF) fitting, which in turn requires an accurate reconstruction of the PSF. Gaia Early Data Release 3 (EDR3) will, for the first time, use a PSF calibration that models several of the strongest dependences, leading to signficantly reduced systematic errors. Aims: We describe the PSF model and calibration pipeline implemented for Gaia EDR3, including an analysis of the calibration results over the 34 months of data. We include a discussion of the limitations of the current pipeline and directions for future releases. This will be of use both to users of Gaia data and as a reference for other precision astrometry missions. Methods: We develop models of the 1D line spread function (LSF) and 2D PSF profiles based on a linear combination of basis components. We fit the models to selected primary sources in independent time ranges, using simple parameterisations for the colour and other dependences. Variation in time is smoothed by merging the independent calibrations in a square root information filter, with resets at certain mission events that induce a discontinuous change in the PSF. Results: The PSF calibration shows strong time and colour dependences that accurately reproduce the varying state of the Gaia astrometric instrument. Analysis of the residuals reveals both the performance and the limitations of the current models and calibration pipeline, and indicates the directions for future development. Conclusions: The PSF modelling and calibration carried out for Gaia EDR3 represents a major step forwards in the data processing and will lead to reduced systematic errors in the core mission data products. Further significant improvements are expected in the future data releases.Comment: Accepted by A&A for inclusion in Gaia EDR3 special issu

    Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV

    Get PDF
    We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1 integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV recorded by the CDF II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are expected from standard model background processes. We place 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115 GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let

    Measurement of the Helicity Fractions of W Bosons from Top Quark Decays Using Fully Reconstructed top-antitop Events with CDF II

    Get PDF
    We present a measurement of the fractions F_0 and F_+ of longitudinally polarized and right-handed W bosons in top quark decays using data collected with the CDF II detector. The data set used in the analysis corresponds to an integrated luminosity of approximately 318 pb -1. We select ttbar candidate events with one lepton, at least four jets, and missing transverse energy. Our helicity measurement uses the decay angle theta*, which is defined as the angle between the momentum of the charged lepton in the W boson rest frame and the W momentum in the top quark rest frame. The cos(theta*) distribution in the data is determined by full kinematic reconstruction of the ttbar candidates. We find F_0 = 0.85 +0.15 -0.22 (stat) +- 0.06 (syst) and F_+ = 0.05 +0.11 -0.05 (stat) +- 0.03 (syst), which is consistent with the standard model prediction. We set an upper limit on the fraction of right-handed W bosons of F_+ < 0.26 at the 95% confidence level.Comment: 11 pages, 2 figures, submitted to Phys. Rev.
    corecore