753 research outputs found

    Variable stars in the Fornax dSph Galaxy. II. Pulsating stars below the horizontal branch

    Full text link
    We have carried out an intensive survey of the northern region of the Fornax dwarf spheroidal galaxy with the aim of detecting the galaxy's short--period pulsating stars (P<0.25 days). Observations collected over three consecutive nights with the Wide Field Imager of the 2.2m MPI telescope at ESO allowed us to detect 85 high-amplitude (0.20-1.00 mag in B-light) variable stars with periods in the range from 0.046 to 0.126 days, similar to SX Phoenicis stars in Galactic metal-poor stellar populations. The plots of the observed periods vs. the B and V magnitudes show a dispersion largely exceeding the observational errors. To disentangle the matter, we separated the first-overtone from the fundamental-mode pulsators and tentatively identified a group of subluminous variables, about 0.35 mag fainter than the others. Their nature as either metal-poor intermediate-age stars or stars formed by the merging of close binary systems is discussed. The rich sample of the Fornax variables also led us to reconstruct the Period-Luminosity relation for short-period pulsating stars. An excellent linear fit, M(V)=-1.83(+/-0.08)-3.65(+/-0.07) log P(fund), was obtained using 153 Delta Scuti and SX Phoenicis stars in a number of different stellar systems.Comment: 11 pages plus 1 on-line figure and 1 on-line table; accepted for publication in ApJ. Part of this work has been the subject of the Laurea thesis of LDA. His supervisor and our colleague, Prof. Laura E. Pasinetti, suddendly passed away on September 13, 2006. Several astronomers have been trained under her tutelage and we gratefully honor her memor

    Understanding the dynamical structure of pulsating stars: The Baade-Wesselink projection factor of the delta Scuti stars AI Vel and beta Cas

    Full text link
    Aims. The Baade-Wesselink method of distance determination is based on the oscillations of pulsating stars. The key parameter of this method is the projection factor used to convert the radial velocity into the pulsation velocity. Our analysis was aimed at deriving for the first time the projection factor of delta Scuti stars, using high-resolution spectra of the high-amplitude pulsator AI Vel and of the fast rotator beta Cas. Methods. The geometric component of the projection factor (i.e. p0) was calculated using a limb-darkening model of the intensity distribution for AI Vel, and a fast-rotator model for beta Cas. Then, using SOPHIE/OHP data for beta Cas and HARPS/ESO data for AI Vel, we compared the radial velocity curves of several spectral lines forming at different levels in the atmosphere and derived the velocity gradient associated to the spectral-line-forming regions in the atmosphere of the star. This velocity gradient was used to derive a dynamical projection factor p. Results. We find a flat velocity gradient for both stars and finally p = p0 = 1.44 for AI Vel and p = p0 = 1.41 for beta Cas. By comparing Cepheids and delta Scuti stars, these results bring valuable insights into the dynamical structure of pulsating star atmospheres. They suggest that the period-projection factor relation derived for Cepheids is also applicable to delta Scuti stars pulsating in a dominant radial mode

    A comprehensive asteroseismic modelling of the high-amplitude delta Scuti star RV Arietis

    Full text link
    We present a comprehensive asteroseismic study of the double-mode high-amplitude delta Scuti star HD 187642 (RV Arietis). The modelling includes some of the most recent techniques: 1) effects of rotation on both equilibrium models and adiabatic oscillation spectrum, 2) non-adiabatic study of radial and non-radial modes, 3) relationship between the fundamental radial mode and the first overtone in the framework of Petersen diagrams. The analysis reveals that two of the observed frequencies are very probably identified as the fundamental and first overtone radial modes. Analysis of the colour index variations, together with theoretical non-adiabatic calculations, points to models in the range of [7065,7245] K in effective temperature and of [1190, 1270] Myr in stellar age. These values were found to be compatible with those obtained using the three other asteroseismic techniques.Comment: accepted for publication in A&

    An asteroseismic study of the Delta Scuti star 44 Tau

    Full text link
    In this paper we investigate theoretical pulsation models for the delta Scuti star 44 Tau. The star was monitored during several multisite campaigns which confirmed the presence of radial and nonradial oscillations. Moreover, its exceptionally low rotational velocity makes 44 Tau particulary interesting for an asteroseismic study. Due to the measured log g value of 3.6 +/- 0.1, main sequence and post-main sequence models have to be considered. We perform mode identification based on photometric and spectroscopic data. A nonadiabatic pulsation code is used to compute models that fit the identified modes. The influence of different opacity tables and element mixtures on the results is tested. The observed frequencies of 44 Tau can be fitted in both the main sequence and the post-main sequence evolutionary stage. Post-main sequence models are preferable as they fulfill almost all observational constraints (fit of observed frequencies, position in the HRD and instability range). These models can be obtained with normal chemical composition which is in agreement with recent spectroscopic measurements. The efficiency of envelope convection (in the framework of the mixing-length theory) is predicted to be very low in 44 Tau. We show that the results are sensitive to the choice between the OPAL and OP opacities. While the pulsation models of 44 Tau computed with OP opacities are considerably too cool and too faint, the use of OPAL opacities results in models within the expected temperature and luminosity range.Comment: 9 pages, 15 figures, 2 tables, accepted for publication in A&

    Revisiting CoRoT RR Lyrae stars: detection of period doubling and temporal variation of additional frequencies

    Full text link
    We search for signs of period doubling in CoRoT RR Lyrae stars. The occurrence of this dynamical effect in modulated RR Lyrae stars might help us to gain more information about the mysterious Blazhko effect. The temporal variability of the additional frequencies in representatives of all subtypes of RR Lyrae stars is also investigated. We pre-process CoRoT light curves by applying trend and jump correction and outlier removal. Standard Fourier technique is used to analyze the frequency content of our targets and follow the time dependent phenomena. The most comprehensive collection of CoRoT RR Lyrae stars, including new discoveries is presented and analyzed. We found alternating maxima and in some cases half-integer frequencies in four CoRoT Blazhko RR Lyrae stars, as clear signs of the presence of period doubling. This reinforces that period doubling is an important ingredient to understand the Blazhko effect - a premise we derived previously from the Kepler RR Lyrae sample. As expected, period doubling is detectable only for short time intervals in most modulated RRab stars. Our results show that the temporal variability of the additional frequencies in all RR Lyrae sub-types is ubiquitous. The ephemeral nature and the highly variable amplitude of these variations suggest a complex underlying dynamics of and an intricate interplay between radial and possibly nonradial modes in RR Lyrae stars. The omnipresence of additional modes in all types of RR Lyrae - except in non-modulated RRab stars - implies that asteroseismology of these objects should be feasible in the near future (Abridged).Comment: 20 pages, 13 figures, accepted for publication in A&

    Measuring mean densities of delta Scuti stars with asteroseismology. Theoretical properties of large separations using TOUCAN

    Full text link
    We aim at studying the theoretical properties of the regular spacings found in the oscillation spectra of delta Scuti stars. We performed a multi-variable analysis covering a wide range of stellar structure and seismic properties and model parameters representative of intermediate-mass, main sequence stars. The work-flow is entirely done using a new Virtual Observatory tool: TOUCAN (the VO gateway for asteroseismic models), which is presented in this paper. A linear relation between the large separation and the mean density is predicted to be found in the low frequency frequency domain (i.e. radial orders spanning from 1 to 8, approximately) of the main-sequence, delta Scuti stars' oscillation spectrum. We found that such a linear behavior stands whatever the mass, metallicity, mixing length, and overshooting parameters considered in this work. The intrinsic error of the method is discussed. This includes the uncertainty in the large separation determination and the role of rotation. The validity of the relation found is only guaranteed for stars rotating up to 40 percent of their break-up velocity. Finally, we applied the diagnostic method presented in this work to five stars for which regular patterns have been found. Our estimates for the mean density and the frequency of the fundamental radial mode match with those given in the literature within a 20 percent of deviation. Asteroseismology has thus revealed an independent direct measure of the average density of delta Scuti stars, analogous to that of the Sun. This places tight constraints on the mode identification and hence on the stellar internal structure and dynamics, and allows a determination the radius of planets orbiting around delta Scuti stars with unprecedented precision. This opens the way for studying the evolution of regular patterns in pulsating stars, and its relation with stellar structure and evolution.Comment: 11 pages, 6 figures, A&A in pres
    • …
    corecore