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1. Introduction 

In the field of nondestructive testing and evaluations (NDT&E), inspection systems working 

at microwave frequencies are now rather common (Zoughi, 2000; Franchois et al., 1998; 

Heinzelmann et al., 2004; Schilz & Schiek, 1981). They usually work by considering the 

electromagnetic waves reflected or transmitted by a body or a specimen. The percentage of 

reflection or the resulting attenuation of the waves can be correlated to the characteristic of 

the material or to possible defects inside the structure. Recently, tomographic approaches 

have been proposed, too. In this case, the imaging apparatus rotates around the target under 

test in order to collect multi-illumination multiview data. After a proper post-processing of 

the measured data, slides of the target cross section are obtained and visualized as rough 

images of the values of the retrieved dielectric parameters. The working modality is similar 

to the X-ray computerized tomography, but, at this lower frequency, the scattering 

phenomena is significant. Consequently, two approaches can be followed. The scattering 

contribution can be considered as an unwanted signal to be eliminated (see, for example, 

(Bertero et al., 2000)) or it can be included in the retrieving process (Colton & Kress, 1998). In 

the last case, which is considered in the present contribution, the field measured in a given 

position cannot be related to the transmitted field produced by a source located at an 

opposite position with respect to the unknown target. On the contrary, any measured value 

must be related to all the sources (if more than one illuminates the target contemporarily) 

and, mainly, to all the scattering points inside the target itself (i.e., the entire cross section).  

In the last years there has been a growing interest in developing imaging systems working 

at microwave frequencies both for industrial applications (Kharkovsky & Zoughi, 2007; 

Giakos et al., 1999; Kraszewski, 1996) and medical diagnostics (Meaney et al., 2000; Jofre et 

al., 1990; Hagl et al., 2003; Henriksson et al., 2010). 
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In this Chapter, the development of a prototype of imaging tomograph working at 

microwave frequencies is discussed and reviewed (Salvadè et al., 2007, Pastorino et al., 

2006). By using this prototype, dielectric targets can be inspected both for material 

characterization as well as for nondestructive analysis. The sample under test (SUT) is 

positioned on a rotating platform made by weakly scattering material, which represents the 

investigation area. Foam microwave absorbers surround the investigation area in order to 

minimize reflections due to the platform itself and to the motorized antenna actuators. A 

transmitting antenna is used for illuminating the SUT with a known incident electric field. 

The scattered electric field is collected by a receiving antenna, which can rotate around the 

table. Both antennas can be moved vertically and are mounted on fiberglass supports. The 

system can collect multi-illumination multiview data at different heights by means of log 

periodic transmitting and receiving antennas (8.5 dBi gain). Moreover, a multi-frequency 

acquisition is also performed by sweeping the operating band of 1-6 GHz with steps of 166 

MHz at a sweep time of 96.348 msec. The transmitted wave and the samples of the scattered 

electric field are obtained by using a vector network analyzer (VNA) including a digital IF 

input filter configured at 300 Hz. The acquisition module is controlled by a custom software, 

while a standard LAN connection is used to interface the VNA to the management PC. Such 

PC also controls and synchronizes the movements of the antennas and the platform by 

means of three motorized actuators, whose drivers are connected through a CAN bus. 

The Chapter is organized as follows. Basic concepts about the microwave measurement 

methods are briefly recalled in Section 2, whereas the design and the construction of the 

microwave tomograph prototype are discussed in Section 3. Section 4 provides some results 

obtained by inverting the measured data. Finally, some conclusions are drawn in Section 5. 

2. Microwave measurement methods 

Microwave imaging and inspection techniques are based on the interaction between 

electromagnetic fields and materials as defined by Maxwell's laws (Boughriet et al.; 1997; 

Fratticioli, 2001; Pozar, 2005; Vincent et al. 2004; Jeffrey et al., 1996). In particular, the 

propagation of microwaves is influenced by material properties such as the dielectric 

permittivity ߳, the electric conductivity ߪ, and the magnetic permeability ߤ. Images obtained 

with microwave techniques are typically maps of the distribution of these parameters within 

an object or a material sample. In microwave sensing applications, it is usually assumed that ߤ =  ଴ the magnetic permeability of the vacuum (nonmagnetic materials), sinceߤ ଴, beingߤ

inspection inside metals is very difficult to achieve due to their high conductivity (thus 

leading to very little penetration of microwaves). In general, for lossy materials, the 

propagation constant is expressed as (Balanis, 1989)  

 ݇ = ߙ + ߚ݆ = ඥ݆߱ߤሺߪ + ݆߱߳ሻ (1) 

where ߙ and ߚ are the attenuation and phase constants, respectively. It can be also 

introduced a complex permittivity, such that: 

 ݆߱߳௖ = ݆߱ሺ߳ᇱ − ݆߳′′ሻ = ߪ + ݆߱߳ = ݆߱߳ ቀ1 − ݆ ఙఠఢቁ (2) 
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where the imaginary part ߳′′ accounts for the material losses. For a homogeneous material, 

the complex permittivity can be easily determined by measuring the electromagnetic field 

(amplitude and phase) at two different positions (before and after crossing the material). 

More in general, when the material sample is not homogeneous and contains many zones 

with different properties, each change of property represents a discontinuity of ߳௥ and ߪ, 

giving rise to diffractions and reflections of the electromagnetic waves.  

Various measurement techniques are known and well documented in the literature 

(Kraszewsky, 1996; Nyfors and Vainikainen, 1989; Clarke et al., 2003) for the 

characterization of dielectric properties of materials. Among these, the most popular are 

based on transmission, reflection, and resonant sensors. Systems working with transmission 

methods basically consist of a transmitting and one or more receiving antennas (Fig. 1). The 

material sample under test is placed between the antennas and interacts with the microwave 

propagation by modifying its amplitude and phase. The physical parameter that describes 

this variation is the propagation constant ݇ which can be obtained by measuring the changes 

in attenuation and phase of the microwave signal when it passes through the material.  

 

Figure 1. Microwave measurement configurations. 

The measuring methods based on reflection concepts use one or more sensors that send a 

signal to a sample material probe and consequently analyze the amplitude and phase of the 

signal that is reflected back (or scattered). What is determined is the (complex) reflection 

coefficient Γ, which, for a normally incident plane wave impinging on an interface between 

two materials (e.g., the air and the unknown material) is given by (Jordan and Balmain, 

1990; Balanis, 1989) 

 Γ = ఎమିఎభఎమାఎభ = √ఢభି√ఢమ√ఢభା√ఢమ (3) 

where ߟଶ and ߟଵ denote the intrinsic impedances of the two media (usually, medium 1 is 

air). When applying the reflection method, it is often useful to share the same antenna for 

both the transmitter and the receiver, therefore simplifying the mechanical complexity of the 

system. Examples of sensors based on this methodology are open-ended coaxial reflection 

sensors, monopole probe/antennas, open-ended waveguide sensors. 
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While microwave systems based on transmission and reflection concepts are now very 

common, systems based on microwave tomography are still rather infrequent. In a typical 

microwave tomograph setup, a material sample under test (SUT) is illuminated by a 

microwave source and the scattered field is collected by one or more receiving antennas 

placed at different positions around the SUT. The information of the scattered  electric field 

is then used to obtain the dielectric properties inside the sample. 

What is actually measured is the sum of the incident and the scattered fields. Since the 

incident field is known, the scattered field can be deduced. In order to collect as much 

information as possible about the scattered field, it is necessary to measure the total field at 

different locations. Also, the reconstruction algorithm requires that this procedure is 

repeated by illuminating the SUT with incident fields that arrive from different angles and 

directions.  

The simplest configuration for a tomograph is therefore that with one moveable 

transmitting antenna and one moveable receiving antenna, similar to that of the 

transmission sensor previously described, but with the two antennas usually not facing each 

other. In order to reduce the amount of moving parts, an arrays of static antennas can also 

be used. The block diagram for the electronic hardware of a microwave tomograph with a 

single moveable antenna pair is shown in Fig. 2. 

 

Figure 2. Simple block representation of a two-antenna tomographic set up.  

The illuminating antenna is fed with a signal from a microwave generator working at one or 

more frequencies. The used wavelength should be chosen comparable to the electrical 

dimensions of the object to be analyzed. The receiver must satisfy the bandwidth 

requirements of the transmitter and must be able to tune to its instant frequency. In order to 

capture also the weakest scattered signals, the receiver should have a good sensitivity, 

dynamic range and selectivity. It should be possibly immune to strong interferers that may 

be present on other frequencies. The information sought for is the amplitude and phase of 

the signal picked up by the receiver antenna, compared to those of the transmitted signal. 

This information is typically extracted from the baseband of the receiver in the form of a 

complex signal. 
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The transmitter signal is, in many cases, a CW carrier, so that the wanted signal will be 

found at frequency zero (DC) at the output of the baseband block of the receiver. The 

receiver's task is that of converting the RF signal centered at the transmitter's frequency to 

baseband, with the best accuracy, dynamic range and possibly lowest noise. This can be 

accomplished with various receiver architectures. In the case of the superheterodyne (or 

heterodyne), the received RF signal, after some filtering and amplification, is first converted 

to an intermediate frequency (IF) by mixing (heterodyning) it with a local oscillator signal. 

Band (or channel) filtering is performed by a band pass filter in the receiver's IF section. 

Successively, the IF signal is demodulated into a base band signal by a synchronous 

demodulator (a mixer) or other circuits, based on the modulation type of the signal (e.g. 

envelope detector for an AM signal with carrier).  Adequate RF filtering is therefore 

mandatory to block image frequencies. 

For imaging applications not only the amplitude of the received signal, but also its phase is 

relevant. The phase information must therefore be preserved during the whole signal 

processing chain throughout the base band. To this end, the IF signal is converted to the 

base band with a vector (or I/Q) mixer as shown in Fig. 3. 

 

Figure 3. IF to baseband I/Q demodulator 

A variant of the superheterodyne receiver aimed at mitigating the image frequency problem 

and used in multi-band receivers is an architecture with two consecutive IF frequency 

sections and mixers. The higher the chosen IF frequency, the larger the distance between the 

wanted RF and the unwanted RF image frequencies will be, therefore relaxing the constraint 

for the RF image blocking filter. On the other hand, in a multi-band receiver IF filtering is 

used to block adjacent channel signals. Such filtering becomes more difficult at higher IF 

frequencies, because the relative bandwidth of the IF filter will be smaller for a given 

channel width.  

The double conversion receiver helps to avoid this compromise by first converting the RF 

signal to a higher IF (and therefore relaxing the front end filtering requirements), followed 

by a second converter and IF where the more demanding channel selection filtering is 

performed. Of the two local oscillators in a double conversion receiver, one is tunable and 

the other operates at a fixed frequency. A fixed frequency oscillator can be better optimized 
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for low phase noise and is also easier to implement. This makes it appealing as the first local 

oscillator in some single chip receivers. In this case, the absolute bandwidth of the first IF 

must cover that of all the RF channels, which for some applications (wide band receivers) 

might not be practical. Choosing the second IF at suitably low frequency enables the 

opportunity to demodulate the signal to baseband with a digital I/Q demodulator (see Low 

IF receiver). 

An alternative to actively suppress the image frequency from the mixer output in a 

superheterodyne receiver is offered by an image reject or Hartley mixer, where RF image 

signals down converted by the two mixers forming this circuit arrive at the adder with 

opposite phase, therefore cancelling each other. On the other hand the wanted RF signals 

combine in phase. The effective image frequency rejection attainable by this circuit depends 

strongly on the accuracy of the 90° phase shifters and is therefore limited in practical 

situations, since it can be quite difficult to obtain sufficiently accurate 90° shifters at higher 

frequency. 

The architecture using low IF receivers can be considered as a variant that is halfway 

between the superheterodyne receiver (of which it maintains the basic block diagram) and 

the homodyne receiver. It maintains the advantage of the superheterodyne over the 

homodyne consisting of the intrinsic absence of DC offsets in the demodulated signal but it 

also keeps the image frequency problem which must be addressed by some of the solutions 

discussed earlier. The low IF frequency makes it possible to digitize the signal at IF and 

perform the channel filtering and baseband conversion in the digital domain, which is an 

interesting feature from the system integration point of view. The better accuracy of the 

digital I/Q demodulator also increases the receiver's SNR in presence of complex signal 

modulation types.   

However, the various receivers suffer in general from interfering signals, both in band and 

out of band but to a different extent. Self-generated interference due to LO or RF signal 

leakage from inside or nearby the receiver can be a source of concern with direct conversion 

receivers, whereas interference from RF signals at the image frequency are a known 

potential issue with superheterodyne receivers. Distortion due to nonlinear effects inside the 

receiver in presence of strong interfering signals is common to all practical receivers. 

The distortion related to third order intermodulation products can be an issue in any type of 

receiver and can be generated by some nonlinearity at any stage, including the front end 

amplifier. In addition, second order intermodulation products generated inside the mixer of 

direct conversion receivers can directly translate to baseband also producing output 

distortions. It is therefore important that the receiver exhibits good performance concerning 

this point. The above mentioned effects result in practical limitations of real receivers in 

terms of dynamic range. Other issues derive from the unbalance in the analog quadrature 

networks found in many signal blocks discussed so far and can result in amplitude and 

phase errors of the baseband output signal. Finally noise from the local oscillators (phase 

noise), baseband noise and quantization noise occurring during the analog to digital 

conversion can reduce the signal to noise ratio of the output signal. 
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A laboratory prototype of a tomograph with good performance and flexibility can be built 

around a network analyzer. This type of instrument contains the necessary RF signal source, 

the RF receiver and baseband signal processing circuitry to obtain comparative amplitude 

and phase measurements between the source (illuminating) signal and the received 

(scattered) signal. As an example to show how different types of frequency conversion and 

receiver architectures discussed so far can be used and combined, the following Fig. 4 shows 

an example of a simplified network analyzer receiver's block diagram. 

 

Figure 4. Simplified block diagram of the receiver section in a typical network analyser 

In this dual conversion receiver, the RF signal is downconverted to a first IF frequency by 

mixing it with a tunable local oscillator signal. Next, after some channel filtering, the signal 

is converted to a second low IF by means of an image reject mixer. At this point, the signal is 

digitized for further processing. The vector demodulation that will produce the amplitude 

and phase information is performed digitally. The source (transmitting) signal generation 

path is usually also made of one or more frequency translation (upconversion) steps in order 

to cover multiple frequency bands. Transmitter and receiver must be synchronized in phase 

and frequency. 

From the previous discussion, it is evident that more than one receiver architecture is 

suitable for a microwave tomograph. The choice should then be made under consideration 

of the environment where the instrument is to be operated (interfering signals), complexity, 

cost and flexibility. Direct conversion receivers are probably the most flexible, since their 

frequency range is basically limited only by the local oscillator tuning range and because 

most of the signal processing can be done digitally. On the other hand, a laboratory 

prototype of a tomograph with optimal performance can be realized with the help of a 

commercial vector network analyzer (VNA), which is often based on a dual conversion 

superheterodyne receiver (Agilent, 2005). It is also very important, for a microwave 

tomograph, that extreme care is addressed against spurious emissions and parasitic 

couplings between antenna cables and circuit components (the latter are particularly critical 

in direct reception/homodyne receivers), as they could easily exceed the amplitude of 

weakly scattered signals coming from the SUT, thus severely reducing the SNR of the 

tomograph. To ensure low emissions or couplings from the antenna cables, these should be 

single or double shielded and the antennas should avoid signal injection on the cable shield. 

Finally, the antenna is one of the most important component for microwave imaging 

systems. Theoretically, many kinds of antenna can fit in the tomography setup 
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specifications. In practical measurements, many things must be taken into account. 

According to the inversion algorithm needs, it is possible to select the optimal antenna 

characteristics that allow obtaining the best performance. In order to enhance the inversion 

accuracy many algorithms use multiple frequencies, some others use pulsed broadband 

signals. This requirement, for example, restricts the antenna choice to broadband types only. 

In the case of a two dimensional inversion algorithm, the SUT is assumed to be 

homogeneous and uniform along the z axis. In other words, the scatterer is divided into 

slices along this axis. Looking at the top view (Fig. 5(a)) the antenna radiation angle must be 

large enough to “illuminate” all the SUT surface. On the other hand, because of the 

properties of the inversion algorithm, the vertical radiation pattern (side view, Fig. 5(b)) 

must be taken as narrow as possible. 

 

Figure 5. (a) Top and (b) side views of the SUT. 

During the measurement setup design, it is also very important to consider the space 

surrounding the inspection area. The inversion algorithms usually assume this space to be 

perfectly homogeneous with known characteristics. In a real implementation this 

assumption is not valid. The measurement setup is composed by many mechanical 

components that could affect the measurements quality. A little variation of the surrounding 

volume can modify the measurements repeatability. The use of antennas with a limited back 

lobe can drastically decrease the influence of this problem. Another possibility to decrease 

the influence of the surrounding volume is the use of microwave absorbing materials 

surrounding the investigation area.  

The choices of the number of antennas and their positions are extremely important. In this 

context there are many possible implementation options depending on the application 

needs and the inversion algorithm topology. One can distinguish mainly between two kinds 

of measurement setup: static or dynamic one. Each one brings advantages or disadvantages 

in relation to the specific application and the designer must therefore consider the properties 

of the object to be imaged. Depending on the SUT, it is generally possible to exclude right 

away some configurations. For example, in the case of a single piece that can fit entirely into 

the investigation domain, it is possible to perform a multiview inspection by rotating the 

SUT on its own axis instead of moving the illuminating antenna. On the other hand, if the 

goal is to measure only a part of a bigger object (e.g., parts of the human body, such as arms, 

legs or breast) the system has to perform a multiple view scanning without the SUT rotation.  

(a) (b)
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3. Practical tomograph implementation example 

This section describes the developed tomograph prototype (Fig. 6). In order to be as flexible 

as possible, a linearly polarized antenna with a large bandwidth has been chosen. Fig. 7 

shows the considered antennas. 

 

Figure 6. Prototype of the microwave tomograph (developed at SUPSI). 

 

Figure 7. Rohde & Schwarz HL050 Antenna. 

The generation, measurement and pre-processing of the microwave signal is carried out 

with a VNA, able to perform measurements from 10 MHz to 20 GHz. A managing software 

running on an external PC gathers all the measurement data through an Ethernet 

connection. The VNA generally requires a calibration. However, in a typical tomograph 

application, an empty (or void) reference measure is taken first and compared against 

subsequent measures with the SUT, therefore eliminating static errors due to reflections, 

phase adjustment errors, fixed interferers, and so on. Fig. 8 shows an example of the used 

VNA. 
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Figure 8. Agilent VNA. 

For mechanical reasons, some parts of the tomograph (in particular the basement) are 

composed by an aluminum structure. Therefore, microwave absorber material (Fig. 9 and 

Fig. 10) are used to prevent reflections.  

 

 

Figure 9. Eccosorb AN79 

During the development of the measurement system, the planning of the illuminating signal 

power and receiver sensitivity play, as previously mentioned, an important role. A good 

dynamic range is the key for reliable and accurate measurements. The entire measurement 

chain can be represented with the block diagram reported in Fig. 11. 

The main elements are:  

 VNA output power (typically -10 – 20 dBm): usually the transmitted power level can 

be easily adjusted on the instrument. If needed, there is the possibility to add an 

external amplifier to increase the power level.  

 RF cable loss (typically 1 - 10 dB): the signal amplitude loss due to the cable 

attenuation is variable in function of the investigation frequency band, of the cable 

quality and length.  
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 Switching hardware loss (typically 1 - 5 dB): the attenuation given by the switching 

hardware is variable and mainly depends on the board layout, the components used 

and the frequency band.  

 Tx/Rx antenna gain/loss (typically -2 – 10 dB of gain): depending of the antenna type 

gain or loss are both possible.  

 VNA receiver sensitivity (typically -70/-100dBm): the instrument's sensitivity level 

specifies the minimum possible signal amplitude required to obtain a reliable 

measurement. The environment noise level could also negatively affect this limit.  

 Investigation area: the investigation area attenuation is the most critical section of the 

whole chain. In fact, while in every other block it is possible to correct the signal level 

by adding some amplification, this is not possible inside the investigation area.  The 

inspection area is composed by the SUT and by its surrounding dielectric, which in 

most of the cases is air. Fig. 12 shows an example of a (rough) investigation area power 

budget including the antennas gain. 

 

Figure 10. Absorber mounting. 
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Figure 11. Measurement system block diagram 

The most critical case is probably when the antennas are at a large distance and the SUT is 

relatively large. The specific example represents the attenuation of a SUT composed by 

wood (߳௥ = 2.2 and ߪ = 0.045	ܵ/݉). 

 

Figure 12. Simplified signal amplitude budget. 

In order to acquire multiview data, in the developed tomograph prototype both the Rx 

antenna and the SUT are rotating and the Tx antenna is static (see the previous section). This 

choice leads to obtain data with the angular increments needed by the inversion algorithms. 

Future developments will be devoted to the implementation of a fully static design. The 

developed tomographic system (Fig. 6) is the result of various optimization steps. One of the 

major problems was the positioning accuracy of the servo motors in charge of moving the 

object and the Rx antenna. This accuracy should be an order of magnitude better than the 

required angular increments. 
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Figure 13. (a) Horizontal circular movement (b) and horizontal and vertical linear movement of the 

developed prototype. 
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As mentioned, in order to keep the potential reflections as low as possible, the body of the 

tomograph was developed in such way that all the metallic parts can easily be hidden from 

the inspection area using absorbers (Fig. 10). Moreover, since covering the vertical arms 

with absorber was unpractical, these parts have been manufactured in glass resin. These 

precautions have made it possible to reduce the impact of the tomograph construction on 

the measured samples to a strict minimum at the benefit of better results. 

A major drawback of this type of configuration is the time required to obtain a single image. 

First of all, each motor movement (summarized in Fig. 13) requires some travel and settling 

time. Consequently, as the measurement points increase, the number of time intervals 

needed for the motors to stabilize and for the network analyzer to acquire the signals and 

send the data to the computer increases, too. Table 1 shows the total time required for a full 

series of mechanical displacements of the Rx antenna corresponding to one view of the SUT. 

This time needs to be multiplied by the number of different views (angular positions) of the 

SUT. 

 

Number of measurement 

points 

Angular increment 

(in degrees) 
Time (in minutes) 

3 90 0.5 

11 27 1.5 

16 18 2 

31 9 3.5 

46 6 5 

91 3 10 

Table 1. Time consumption based on the mechanical positioning parameters. 

The acquisition software developed for the management of the tomograph and running on a 

PC has to communicate with two different devices: 

 the servo motor control units to provide position inputs and to read back status 

information; 

 the VNA to input acquisition settings and to transfer the measures. 

All steps involved in the acquisition procedure, i.e., a precise mechanical positioning, an 

accurate microwave measure, a lossless data transfer and storage need to be performed 

sequentially because an error free execution of each of them is necessary for a successful 

overall result. To address these requirements a simple but robust software has been 

developed (Fig. 14). It consists of a linear flowchart without parallelisms, which is flexible 

enough to allow adding checks after every step. The simplicity of the flowchart makes it 

possible to easily add processing blocks or functionalities in case of future needs. For a 

system prototype to be used during the design and validation of new imaging algorithms 

this was considered an important feature.  
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Figure 14. Acquisition software flowchart. 

4. Measurement and simulation results 

The measured data are stored and a processing method is applied in order to produce rough 

images of the reconstructed distributions of the dielectric parameters of the SUT cross 

section. The reconstruction procedure is based on the iterative application of the so-called 

distorted-Born approximation (Chew et al., 1994). Details concerning the implementation of 

the iterative procedures can be found in (Salvadè et al., 2010; Pastorino, 2010; Pastorino et 

al., 2006; Pastorino, 2004). 
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The capabilities of the proposed imaging systems have been preliminary assessed by means 

of comparisons with numerical results in terms  of the measured electromagnetic field in the 

presence of scatters. The scatterer is a wood slab whose cross section has dimensions 11.7	 × 	7.8	ܿ݉. A void circular hollow of radius of 2	ܿ݉ has been drilled in the sample. The 

values of the dielectric parameters of the wood slab are about 2.2 (relative dielectric 

permittivity) and 0.04 S/m (electric conductivity). Fig. 15 and Fig. 16 provides the values of 

the measured and simulated samples. In particular, the figure plots refer to the amplitudes 

and phases of the incident (Fig. 15) and total (Fig. 16) electric fields, respectively. As can be 

seen, the measurements are in good agreement with the simulated values. 

A lot of wood and plastic slabs have been reconstructed by using the proposed prototype. 

The capabilities of the approach in detecting voids and defects inside these structures have 

been also evaluated, even in the presence of noise and interfering signals. The reader can 

refer to papers (Salvadè et al., 2010; Monleone et al., 2012; Pastorino et al., 2009) and the 

reference therein. An example is reported in the following. The inspected target is composed 

by a hollow wood beam with rectangular cross section of 11.5	ܿ݉	 × 	7.5	ܿ݉ and height of 50	ܿ݉ (with a rectangular hole of size 5.5	ܿ݉	 × 	3.5	ܿ݉) and a plastic object of 11 cm × 9 cm  

and having the same height (with a rectangular hole of size 5.3	ܿ݉	 × 	3.0	ܿ݉) containing 

sand. The nominal values of the relative dielectric permittivities of wood, plastic, and sand 

are 1.8, 2.7, and 3, respectively. An example of the reconstruction results obtained with a 

frequency of 4.5	ݖܪܩ is reported in Fig. 17. As can be seen, the reconstruction is fairly good 

and both the hollow cylinders can be quite accurately located (inside the test area) and 

shaped. The values of the relative dielectric permittivity are also quite similar to the actual 

ones, confirming that the approach is able to provide a so-called “quantitative” imaging.  

More recently, the presence of metallic inclusions inside a dielectric structure has been also 

considered (Salvadè et al., 2008; Maffongelli et al., 2012). In this case, the imaginary part of 

the contrast function is retrieved, since it is related to the electric conductivity distribution of 

the structure. The possibility of locating metallic inclusions inside dielectric objects is clearly 

very appealing in several industrial application, e.g., in the wood industry, where undesired 

metallic object can compromise the industrial process (the row material can be not usable if 

foreign bodies are present). Moreover, these metallic inclusions may also damage the cutting 

machines used in that application. 

Two examples are provided. In the first case, a wood slab of rectangular cross section of 

dimensions 11	ܿ݉	 × 	9	ܿ݉ is assumed. Its relative dielectric permittivity is equal to ߳ = 2.2 

and its electric conductivity is equal to ߪ = 0.045	ܵ/݉.  For the considered scenario, 3 

frequencies in the range [3, ܸ ,are assumed Moreover ݖܪܩ	[5 = 8 sources, and ܯ = 51 

measurement points are considered. A single inclusion, modeled as a perfect electric 

conducting (PEC) metallic inclusion (i.e., ߪ = ∞) with circular cross section of radius ݎ = 1	ܿ݉ and located at ሺ2.0, 0.0ሻ	ܿ݉, has been considered. 

The distribution of the electric conductivity [ܵ/݉] provided by the inversion algorithm are 

shown in Fig. 18. Although, largely underestimated (no a priori information about the metallic 

nature of the scatterers have been included into the electromagnetic model), the distribution of 

the conductivity allows one to correctly identify the inclusion present in the wood slab.  
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Figure 15. Comparison between the measured and simulated incident electric fields at the 

measurement points. (a) Amplitude (in volts per meter). (b) Phase (in degrees). © [2009] IEEE. 

Reprinted, with permission, from M. Pastorino, A. Salvadè, R. Monleone, G. Bozza, and A. Randazzo, 

“A new microwave axial tomograph for the inspection of dielectric materials,” IEEE Trans. Instrum. 

Meas., vol. 58, no. 7, pp. 2072-2079, 2009. 

In the second case, two buried objects, modeled as metallic inclusions with circular cross 

section of radius ݎ = 1	ܿ݉ and located at ሺ−2.0, 0.0ሻ	ܿ݉ and ሺ2.0, 0.0ሻ	ܿ݉, respectively, are 

(a)

(b)
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considered. In this case, too, the reconstructed distribution of the electric conductivity, 

shown in Fig. 19, allows a correct identification of the two inclusions. 

 

Figure 16. Comparison between the measured and simulated total electric fields at the measurement 

points. (a) Amplitude (in volts per meter). (b) Phase (in degrees). © [2009] IEEE. Reprinted, with 

permission, from M. Pastorino, A. Salvadè, R. Monleone, G. Bozza, and A. Randazzo, “A new 

microwave axial tomograph for the inspection of dielectric materials,” IEEE Trans. Instrum. Meas., vol. 

58, no. 7, pp. 2072-2079, 2009. 

(a)

(b)
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5. Conclusions 

In this paper, the development of a prototype of a tomographic imaging systems working at 

microwave frequencies has been reported. Starting with a brief review of microwave 

measurement concepts, the details of the designed system have been reported. Morever, 

some measurements of the incident and total electric field have been provided, together with 

comparisons with simulated data. Finally, some reconstruction results concerning the  

 

Figure 17. Reconstructed distribution of the dielectric permittivity of an inhomogeneous target 

(constituted by two hollow cylinders with rectangular cross sections, made of wood and plastic 

materials; one of them is filled by sand). 

 

Figure 18. Reconstructed image of a wood slab with a metallic inclusion. © [2008] IEEE. Reprinted, 

with permission, from A. Salvadè, M. Pastorino, R. Monleone, A. Randazzo, T. Bartesaghi, G. Bozza, 

and S. Poretti, “Microwave imaging of foreign bodies inside wood trunks,” Proc. 2008 IEEE International 

Workshop on Imaging Systems and Techniques (IEEE IST08), Chania, Crete, Greece, Sept. 10-12, 2008.  
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inspection of dielectric material have been shown. The case of wood material with metallic 

inclusion has also been reported. Although quite preliminary, these results demonstrated that 

the inspection of these materials with microwave tomography is feasible. The developed 

system is quite simple and relatively inexpensive  and can  be further considered for 

application at several industrial levels, e.g., for nondestructive estimations in wood industry. 

 

Figure 19. Reconstructed image of a wood slab with two metallic inclusions. © [2008] IEEE. Reprinted, 

with permission, from A. Salvadè, M. Pastorino, R. Monleone, A. Randazzo, T. Bartesaghi, G. Bozza, 

and S. Poretti, “Microwave imaging of foreign bodies inside wood trunks,” Proc. 2008 IEEE International 

Workshop on Imaging Systems and Techniques (IEEE IST08), Chania, Crete, Greece, Sept. 10-12, 2008.  
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