32 research outputs found

    Characterizing analogue caldera collapse with computerized X-ray tomography

    Get PDF
    Analogue models of caldera collapse were imaged by computerized X-ray tomography (μCT). Interval μCT radiography sequences document ‘2.5D’ surface and internal model deformation in an unprecedented way, and carry the potential for a better understanding of the kinematics of various volcano-tectonic processes, of which caldera collapse is a mere illustration. A semi-automatic subsidence velocity analysis was carried out on radiographs. The developed method is a step towards the quantitative documentation of volcano-tectonic modelling that would render data interpretations immediately comparable to monitoring data available from recent deformation at natural volcanoes

    The emergence of the brain non-CpG methylation system in vertebrates

    Get PDF
    Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distantly related animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. We also found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole-genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests that the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage.This work was supported by the Australian Research Council (ARC) Centre of Excellence programme in Plant Energy Biology (grant no. CE140100008). R.L. was supported by a Sylvia and Charles Viertel Senior Medical Research Fellowship, ARC Future Fellowship (no. FT120100862) and Howard Hughes Medical Institute International Research Scholarship. A.d.M. was funded by an EMBO long-term fellowship (no. ALTF 144-2014). J.L.G.-S. was supported by the Spanish government (grant no. BFU2016- 74961-P) and the institutional grant Unidad de Excelencia María de Maeztu (no. MDM-2016-0687). B.V. was supported by the Biomedical Research Council of the Agency for Science, Technology and Research of Singapore. F.G. was supported by an ARC Future Fellowship (no. FT160100267). C.W.R. was supported by an NSF grant (no. IOS-1354898). J.R.E. is an investigator of the Howard Hughes Medical Institute. Genomic data was generated at the Australian Cancer Research Foundation Centre for Advanced Cancer Genomics

    An Inside Perspective on Magma Intrusion: Quantifying 3D Displacement and Strain in Laboratory Experiments by Dynamic X-Ray Computed Tomography

    Get PDF
    Magma intrusions grow to their final geometries by deforming the Earth's crust internally and by displacing the Earth's surface. Interpreting the related displacements in terms of intrusion geometry is key to forecasting a volcanic eruption. While scaled laboratory models enable us to study the relationships between surface displacement and intrusion geometry, past approaches entailed limitations regarding imaging of the laboratory model interior or simplicity of the simulated crustal rheology. Here we apply cutting-edge medical wide beam X-ray Computed Tomography (CT) to quantify in 4D the deformation induced in laboratory models by an intrusion of a magma analog (golden syrup) into a rheologically-complex granular host rock analog (sand and plaster). We extract the surface deformation and we quantify the strain field of the entire experimental volume in 3D over time by using Digital Volume Correlation (DVC). By varying the strength and height of the host material, and intrusion velocity, we observe how intrusions of contrasting geometries grow, and induce contrasting strain field characteristics and surface deformation in 4D. The novel application of CT and DVC reveals that distributed strain accommodation and mixed-mode (opening and shear) fracturing dominates in low-cohesion material overburden, and leads to the growth of thick cryptodomes or cup-shaped intrusions. More localized strain accommodation and opening-mode fracturing dominates in high-cohesion material overburden, and leads to the growth of cone sheets or thin dikes. The results demonstrate how the combination of CT and DVC can greatly enhance the utility of optically non-transparent crustal rock analogs in obtaining insights into shallow crustal deformation processes. This unprecedented perspective on the spatio-temporal interaction of intrusion growth coupled with host material deformation provides a conceptual framework that can be tested by field observations at eroded volcanic systems and by the ever increasing spatial and temporal resolution of geodetic data at active volcanoes

    Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution.

    Get PDF
    Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.This work was supported by the following grants: R.L.—National Health and Medical Research Council (NHMRC) Project Grant 1130168, NHMRC Investigator Grant 1178460, Silvia and Charles Viertel Senior Medical Research Fellowship, Howard Hughes Medical Institute International Research Scholarship, and Australian Research Council (ARC) LE170100225; S.F.—NHMRC Ideas Grant 1184421; I.V.—ARC Future Fellowship FT170100359, UNSW Scientia Fellowship, and NHMRC Project Grant RG170137; S.B.—NHMRC-ARC Dementia Research Development Fellowship 1111206; C.P.—Raine Foundation Priming Grant RPG66-21; J.M.P.—Silvia and Charles Viertel Senior Medical Research Fellowship, ARC Future Fellowship FT180100674. This work was supported by a Cancer Research Trust grant ‘‘Enabling advanced single cell cancer genomics in WA’’ and Cancer Council WA enabling grant. Genomic data were generated at the ACRF Centre for Advanced Cancer Genomics and Genomics WA. Human brain tissue was received from the UMB Brain and Tissue Bank at the University of Maryland, part of the NIH NeuroBioBank. The glioblastoma sample was procured and provided by the AGOG biobank, funded by CINSW grant SRP-08-10. L.M. was a fellow of The Lorenzo and Pamela Galli Medical Research Trust. We thank Ankur Sharma and Greg Neely for valuable feedback. The graphical abstract and elements of Figure 1A were created with BioRender.S

    Inversions of Surface Displacements in Scaled Experiments of Analog Magma Intrusion

    No full text
    Abstract Standard geodetic models simplify magma sheet injection to the opening of geometrically simple dislocations in a linearly elastic, homogeneous medium. Intrusion geometries are often complex, however, and non‐elastic deformation mechanisms can dominate the response of heterogeneous rocks to magma‐induced stresses. We used three‐dimensional near‐surface displacements of a scaled laboratory experiment in which a steeply inclined analog magma sheet was injected into granular material. We ran forward models and inverted for eight parameters of an “Okada‐type” tensile rectangular dislocation in a homogeneous, isotropic, and linearly elastic half‐space. Displacements generated by a forward model largely mismatch the experimental displacements, but full or restricted non‐linear inversions of geometrical parameters reduce the residual displacements. The intrusion opening, dip, depth, and to a lesser degree length and width mismatch the most between the experiment and inversion results, whereas location and strike mismatch the least. Our results challenge assumptions made by many analytical and geodetic models.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Segment tip geometry of sheet intrusions, I : Theory and numerical models for the role of tip shape in controlling propagation pathways

    Get PDF
    This study was conducted without allocated funding. Catherine Greenfield is a Daphne Jackson Trust Research Fellow funded by NERC and the University of Leicester. Simon Gill is supported by a Royal Society Apex Award. Sam Poppe was supported by a frs-FNRS postdoctoral fellowship while at UlB and currently by a ULAM scholarship (NAWA Poland) and NCN Poland grant 2020/37/K/ST10/02447 at SRC PAS. The au- thors thank Tim Davis and Steffi Burchardt for discussions that benefitted the formulation of this paper, and thank the three anonymous reviewers and Editor—Jamie Farquharson—for review commentary that helped to improve the clarity of this paper.Peer reviewedPublisher PD
    corecore