395 research outputs found
Method for Computing Short-Range Forces between Solid-Liquid Interfaces Driving Grain Boundary Premelting
We present a molecular dynamics based method for computing accurately
short-range structural forces resulting from the overlap of spatially diffuse
solid-liquid interfaces at wetted grain boundaries close to the melting point.
The method is based on monitoring the fluctuations of the liquid layer width at
different temperatures to extract the excess interfacial free-energy as a
function of this width. The method is illustrated for a high energy Sigma 9
twist boundary in pure Ni. The short-range repulsion driving premelting is
found to be dominant in comparison to long-range dispersion and entropic forces
and consistent with previous experimental findings that nanometer-scale layer
widths may only be observed very close to the melting point.Comment: 5 pages, four figure
CALPHAD formalism for Portland clinker: thermodynamic models and databases
International audienceThe so-called CALPHAD method is widely used in metallurgy to predict phase diagrams of multi-component systems. The application of the method to oxide systems is much more recent, because of the difficulty of modelling the ionic liquid phase. Since the 1980s, several models have been proposed by various communities. Thermodynamic databases for oxides are available and still under development. The purpose of this article is to discuss the distinct approaches of the method for the calculation of multi-component systems for Portland cement elaboration. The article gives a state of the art of the most recent experimental data and the various calculations for the CaO-Al2O3-SiO2 phase diagram. A literature review of the three binary sub-systems leads to main conclusions: (i) discrepancies are found in the literature for the selected experimental data, (ii) the phase diagram data in the reference books are not complete and up to date and (iii) the two-sublattices model and the modified quasichemical model can be equally used for the modelling of the aluminates liquid. The predictive feature of the CALPHAD method is illustrated using the CaO-Al2O3-SiO2 system with the two-sublattices model: extrapolated (predicted) and fully-assessed phase diagrams are compared in the clinkering zone of interest. The recent application of the predictive method for the calculations of high-order systems (taking into account Fe2O3, SO3, CaF2, P2O5) shows that the databases developed with the two-sublattices model and the modified quasichemical model are no longer equivalent
Nebulized Colistin in Ventilator-Associated Pneumonia and Tracheobronchitis: Historical Background, Pharmacokinetics and Perspectives
Colistin; Phramacokinetic; Technique of nebulizationColistina; Farmacocinètica; Tècnica de nebulitzacióColistina; Farmacocinético; Técnica de nebulizaciónClinical evidence suggests that nebulized colistimethate sodium (CMS) has benefits for treating lower respiratory tract infections caused by multidrug-resistant Gram-negative bacteria (GNB). Colistin is positively charged, while CMS is negatively charged, and both have a high molecular mass and are hydrophilic. These physico-chemical characteristics impair crossing of the alveolo-capillary membrane but enable the disruption of the bacterial wall of GNB and the aggregation of the circulating lipopolysaccharide. Intravenous CMS is rapidly cleared by glomerular filtration and tubular excretion, and 20–25% is spontaneously hydrolyzed to colistin. Urine colistin is substantially reabsorbed by tubular cells and eliminated by biliary excretion. Colistin is a concentration-dependent antibiotic with post-antibiotic and inoculum effects. As CMS conversion to colistin is slower than its renal clearance, intravenous administration can lead to low plasma and lung colistin concentrations that risk treatment failure. Following nebulization of high doses, colistin (200,000 international units/24h) lung tissue concentrations are > five times minimum inhibitory concentration (MIC) of GNB in regions with multiple foci of bronchopneumonia and in the range of MIC breakpoints in regions with confluent pneumonia. Future research should include: (1) experimental studies using lung microdialysis to assess the PK/PD in the interstitial fluid of the lung following nebulization of high doses of colistin; (2) superiority multicenter randomized controlled trials comparing nebulized and intravenous CMS in patients with pandrug-resistant GNB ventilator-associated pneumonia and ventilator-associated tracheobronchitis; (3) non-inferiority multicenter randomized controlled trials comparing nebulized CMS to intravenous new cephalosporines/ß-lactamase inhibitors in patients with extensive drug-resistant GNB ventilator-associated pneumonia and ventilator-associated tracheobronchitis.This research received no external funding
Pharmacokinetic Characteristics of Nebulized Colistimethate Sodium Using Two Different Types of Nebulizers in Critically Ill Patients with Ventilator-Associated Respiratory Infections
Colistin pharmacokinetics; Critically ill; Inhaled colistinFarmacocinética de la colistina; Enfermo crítico; Colistina inhaladaFarmacocinètica de la colistina; Malalt crític; Colistina inhaladaBackground: Rising antimicrobial resistance has led to a revived interest in inhaled colistin treatment in the critically ill patient with ventilator-associated respiratory infection (VARI). Nebulization via vibrating mesh nebulizers (VMNs) is considered the current standard-of-care, yet the use of generic jet nebulizers (JNs) is more widespread. Few data exist on the intrapulmonary pharmacokinetics of colistin when administered through VMNs, while there is a complete paucity regarding the use of JNs. Methods: In this study, 18 VARI patients who received 2 million international units of inhaled colistimethate sodium (CMS) through a VMN were pharmacokinetically compared with six VARI patients who received the same drug dose through a JN, in the absence of systemic CMS administration. Results: Surprisingly, VMN and JN led to comparable formed colistin exposures in the epithelial lining fluid (ELF) (median (IQR) AUC0–24: 86.2 (46.0–185.9) mg/L∙h with VMN and 91.5 (78.1–110.3) mg/L∙h with JN). The maximum ELF concentration was 10.4 (4.7–22.6) mg/L and 7.4 (6.2–10.3) mg/L, respectively. Conclusions: Based on our results, JN might be considered a viable alternative to the theoretically superior VMN. Therapeutic drug monitoring in the ELF can be advised due to the observed low exposure, high variability, and appreciable systemic absorption.This research was funded by Norma Hellas S.A., grant number 06797/2017, managed by the Special Research Account of the National and Kapodistrian University of Athens (ELKE)
Interactions between leaf macro, micronutrients and soil properties in pistachio (Pistacia vera L.) orchards
The interactions between: (i) leaf dry matter macronutrients, micronutrients and soil chemical properties, (ii) leaf macro- and micronutrients, (iii) soil macro- and micronutrients and (iv) soil chemical properties, and soil micro- and macronutrients in 50 pistachio orchards were investigated in leaves and soils by means of regression analysis. Most of the soils were deficient in plant-available P, Zn, Mn, Fe, and B, while they were excessively supplied with Cu. Leaf analysis showed that most of the trees were sufficient in K, Mg, Mn and B, but deficient in N, P and Fe, and excessive in Zn and Cu. It was found that almost all the significant elemental interactions occurring in pistachio leaves or soils were synergistic, contributing considerable quantities of available nutrients and, therefore,improving the nutrient status of pistachio trees, and the level of soil fertility. On the otherhand, the interactions between K and Mg in leaves, and between soil pH and leaf N or soil Fe, Mn and B, were antagonistic. It is suggested that these results must be taken into account during fertilization of pistachio trees, in order to avoid nutritional disorders and to promote plant growth, productivity and nut quality
Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease)
The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80–85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery
Unconventional MBE Strategies from Computer Simulations for Optimized Growth Conditions
We investigate the influence of step edge diffusion (SED) and desorption on
Molecular Beam Epitaxy (MBE) using kinetic Monte-Carlo simulations of the
solid-on-solid (SOS) model. Based on these investigations we propose two
strategies to optimize MBE growth. The strategies are applicable in different
growth regimes: During layer-by-layer growth one can exploit the presence of
desorption in order to achieve smooth surfaces. By additional short high flux
pulses of particles one can increase the growth rate and assist layer-by-layer
growth. If, however, mounds are formed (non-layer-by-layer growth) the SED can
be used to control size and shape of the three-dimensional structures. By
controlled reduction of the flux with time we achieve a fast coarsening
together with smooth step edges.Comment: 19 pages, 7 figures, submitted to Phys. Rev.
- …