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Abstract (150-250 words): 239 words 

 The so-called CALPHAD method is widely used in metallurgy to predict phase diagrams 

of multi-component systems. The application of the method to oxide systems is much more recent, 

because of the difficulty of modelling the ionic liquid phase. Since the 1980s, several models have 

been proposed by various communities. Thermodynamic databases for oxides are available and 

still under development. 

 The purpose of this article is to discuss the distinct approaches of the method for the 

calculation of multi-component systems for Portland cement elaboration. The article gives a state 

of the art of the most recent experimental data and the various calculations for the CaO-Al2O3-

SiO2 phase diagram. A literature review of the three binary sub-systems leads to main conclusions: 

(i) discrepancies are found in the literature for the selected experimental data, (ii) the phase 

diagram data in the reference books are not complete and up to date and (iii) the two-sublattices 

model and the modified quasichemical model can be equally used for the modelling of the 

aluminates liquid. The predictive feature of the CALPHAD method is illustrated using the CaO-

Al2O3-SiO2 system with the two-sublattices model: extrapolated (predicted) and fully-assessed 

phase diagrams are compared in the clinkering zone of interest. The recent application of the 

predictive method for the calculations of high-order systems (taking into account Fe2O3, SO3, 

CaF2, P2O5) shows that the databases developed with the two-sublattices model and the modified 

quasichemical model are no longer equivalent. 
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1. Introduction 

 Portland cement is obtained by grinding an artificial rock, called the 

clinker, with a small amount of gypsum (~5%) added in order to delay the setting 

time of cement. The clinker is produced by heating a mixture of limestone (~80 

wt%) and clay (~20 wt%) up to the so-called clinkering temperature (Tc) in the 

range of 1400-1500 °C. The clinker contains four compounds at least. The two 

major phases are solid solutions of two calcium silicates, Ca3SiO5 and Ca2SiO4, 

referred to as alite and belite, respectively. The two other phases are solid 

solutions of two calcium aluminates, Ca3Al2O6 and Ca4Al2Fe2O10. Hereafter, we 

use the compact mineralogical notation: C=CaO, S=SiO2, A=Al2O3, F=Fe2O3. The 

four compounds are designated as C3S, C2S, C3A and C4AF. 

 

Understanding the quaternary phase diagram CaO-SiO2-Al2O3-Fe2O3 

(hereafter referred to as ‘CASF’ system) is the basis of the chemistry in the kiln. 

Table 1 summarises the four main zones and successive reactions between 400 °C 

and Tc. The ternary phase diagram CaO-Al2O3-SiO2 (referred to as ‘CAS’ phase 

diagram) is often used for a preliminary understanding of Portland cements. 

Rankin was the first to determine such a diagram [1]. It is particularly relevant for 

the fabrication of white cements that are characterised by a very small Fe2O3 

content. Figure 1 shows the composition area of Portland cements in the ‘CAS’ 

system. For white cements, melting temperatures (Tm) and clinkering 

temperatures (Tc) are about 1380 °C and 1500 °C, respectively. At Tc=1500 °C, 

the three phases in equilibrium are C3S, α-C2S and the aluminates liquid of 

composition Lc. The respective Lc compositions for 1500 and 1400 °C are: CaO 

(~59 wt%), Al2O3 (~32 wt%), SiO2 (~9 wt%) and CaO (~55 wt%), Al2O3 (~37 

wt%), SiO2 (~8 wt%). In the quaternary ‘CASF’ system, the temperature of the 

liquidus is reduced down to Tm=1338 °C. The composition and the proportion of 

liquid depend on the weight ratio A/F. The proportion of liquid rises up to 15-25 

wt% [2]. The Fe2O3 proportion in the liquid is in the 5-14 wt% range, for A/F 

values in the 6.06-0.64 wt% range [3]. 

 



 The chemistry in the kiln is often modified by the impurities (the so-called 

minors) introduced during the elaboration process. These impurities are 

introduced by the rocks, the additives or the fuels. They play an important role 

during the clinkering process. In some cases, impurities such as SO3 or MgO 

change the composition of the interstitial melt [4, 5], leading preferentially to the 

polymorph M1 or M3 of alite in the clinker [6]. In other cases, minor oxides such 

as CaF2 or MgO may lower temperatures Tm and Tc [3], and reduce both the CO2 

emissions and the energy consumption for the fabrication of cement. Since the 

1990s, the cement industry has used more and more alternative fuels (ratio up to 

1/3), in order to favour the valorization of wastes and reduce the use of fossil 

fuels. This was the origin of new experimental studies related to the effects of 

minors, such as phosphorus when meat and bone meals are burnt [7]. These 

studies highlight the lack of knowledge of multi-component equilibrium phase 

diagrams. In addition, the knowledge of multi-components phase diagrams for 

clinker manufacturing is also motivated by the research of new compositions of 

cement within the context of CO2 emission reduction.  

 
Table 1 Portland clinker formation: main zones and reactions from 400 °C to 1500 °C in a typical 

dry-process rotary kiln. In modern plants with preheater towers, the dehydration and initial 

calcinations take place out of the kiln in the preheater tower. 

Zones T (° C) Reactions 

Dehydration  400- 600 Deshydroxylation of clay (  H2O) 
 600- 900 Decomposition of clay, with formation of reactive oxide mixture: SiO2, Al2O3, Fe2O3
Calcination 600- 1000 Decomposition of limestone (  CO2) with formation of reactive oxide CaO 

Formation of C2S and initial compounds C12A7, CA and C2F 
 1000-1300 Formation of C2S, C3A, C4AF 
Clinkering 1320-1380 (Tm) Melting of C3A and C4AF 
 1400-1500 (Tc) Formation of clinker (clinkering) with formation of C3S: CaO + C2S → C3S 

Three phases in equilibrium: C3S + C2S + Liquid of aluminates (15-25 wt%) 
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Fig. 1. Zone of Portland cements in the ‘CAS’ system (white cements). Composition of the three 

arrowed phases: C3S (wt% SiO2 = 26.16), C2S (wt% SiO2 = 34.88) and C3A (wt% Al2O3 = 37.74). 

 

 The most usual approach to determine equilibrium phase diagrams is the 

experimental route, involving syntheses of samples of various compositions, heat 

treatments and structural characterisations. Such experimental studies are 

expensive and time consuming, especially when the number of components of the 

systems increases. Since the 1970s, an alternative route is to use the 

computational CALPHAD method (CALculation of PHAse Diagrams) for the 

modelling of phase diagrams [8, 9].  

 

 The CALPHAD method is a semi-empirical method used for the 

modelling of thermodynamic properties and for the calculation of equilibrium 

phase diagrams. As far as the molar Gibbs free energies Gm(x,T,P) of all the 

phases of a given system are known, it becomes possible to calculate the phase 

diagram by minimising the total Gibbs energy. The molar Gibbs energies of the 

different phases are given by theoretical thermodynamic models. Then, the 

parameters of the models are determined by refining a critical set of experimental 

data using a least-square method and subsequently used for calculating phase 

diagrams. The determination of the coefficients is often called assessment or 

optimisation of a system. Since the 1990s, a major effort of the thermodynamic 

community was to gather data for pure elements and binary mixtures in databases 

[10]. Even if the determination of the coefficients of binary systems is still time-

consuming, the strength of the CALPHAD method lies in its ability to predict 

ternary or high order systems from the extrapolation of the thermodynamic excess 

quantities of the sub-systems. With this method, the calculation of high order 

systems can be reduced down to few minutes. The predominant method, as 

recommended by Hillert [11], uses an equation developed by Muggianu [12]. 

Other geometric methods are suitable such as Kohler and Toop’s [11, 12]. 

 

 At the present time, extensive databases exist for metallurgy. The 

CALPHAD technique is already a routine method for the development of new 

alloys in metallurgy. Its application to oxide systems is much more recent, mainly 

because of the difficulty to model the liquid phase. Indeed, ionic liquids exhibit a 

strong short-range order (SRO) around given compositions. For example, the 
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silicate melts in the MO-SiO2 systems with MO basic oxides (M=Ca, Mg, Mn,…) 

have a strong short order in the vicinity of the molar fraction XSiO2=1/3, which is 

associated with the formation of orthosilicate compound M2SiO4 with congruent 

melting [13]. Since 1980, four models have been developed: the ionic two-

sublattice model [8, 14, 15], the modified quasichemical model [13], the 

associated model [16] and the cellular model [17]. Various databases for ceramics, 

geochemistry and steel industry (slags) have been developed with different 

models and codes. In 2000, the CALPHAD method was applied to cement for the 

first time: Barry and Glasser [18] performed calculations using the associated 

model to validate the method for cement clinkering reactions. Since 2000, the 

thermodynamic community undertook a considerable effort to develop reliable 

oxide databases. The assessed parameters are published in academic journals 

or/and gathered into commercial databases. Since 2009, the main databases are: 

ION3 developed with Thermo-Calc software using the ionic two-sublattice model, 

FToxid [19] developed with FactSage software using the modified quasichemical 

model, and NPL oxide developed with MTDATA software using the associated 

model. These databases are built from the assessed descriptions of all binary 

constituents systems. Ternary and higher order systems are not always fully 

optimised, in particular when extrapolation is sufficient to describe the system in 

the composition and temperature ranges of interest [20]. Based on the available 

published data, this article aims at pointing out, in the particular composition and 

temperature domain of clinkering, the possible divergent points and the respective 

advances of the various databases. 

 

 In the first part of the article, the oxide systems of cement interest are 

reviewed with the aim to compare the assessments arising from several models. 

The systems discussed are the binary systems: CaO-SiO2, CaO-Al2O3, Al2O3-SiO2 

(the knowledge of binaries is a requirement) and the ternary CaO-Al2O3-SiO2 

(‘CAS’) system. Then, the predictive power of the method is illustrated on the 

basis of the CaO-Al2O3-SiO2 system, in particular in the clinkering zone. The 

article ends with a brief state of the art of the public and commercial 

thermodynamic databases for taking into account Fe2O3 and other components 

useful for cement industry. 
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2. Calculation of the three binary sub-systems of 
the CaO-Al2O3-SiO2 system: state-of-art 

2.1. A review of the evaluations for the ‘CAS’ system 

Table 2 gives a state of the art of the various evaluations available in the 

literature for the three binary reference diagrams (CaO-SiO2, CaO-Al2O3 and 

SiO2-Al2O3) and the ternary CaO-Al2O3-SiO2 system. For each assessment, we 

give the model used for the liquid and the experimental points for the liquidus. It 

can be seen that the different authors used the four existing models for binaries. 

For the development of higher order systems, two models only are retained: the 

two-sublattice model and the modified quasichemical model. 

 

Table 2 Evaluations (or assessments) of the CaO-Al2O3-SiO2 ternary phase diagram and its three 

binary sub-systems. The columns list: (1) the system, (2) the thermodynamic model for the ionic 

liquid, (3) the thermodynamic calculation software, (4) the selected experimental points for the 

liquidus, and (5) the reference(s) where the thermodynamic parameters of the phases are described. 

In columns 4 and 5, the first reference corresponds to the whole selected phase diagram and the 

following lines give the reinvestigations for some temperature and composition ranges.  
 

System Model for liquid Software Liquidus experimental points  Ref. 
 

Two-sublattice 
 

Thermo-Calc 
 

[21] 
Tm(CaO) = 2900 °C [22] 
CaO-rich part: [23] 
Miscibility gap: [24], [25] 
 

 

[26], 
[27], 
[28] 

Modified quasichemical FactSage [1], [29] 
Tm(CaO) = 2572 °C [30] 
Miscibility gap: [24], [25] 
 

[31], 
[13] 

Cellular Mtdata [21] 
Tm(CaO) = 2900 °C [32] 
CaO-rich part: [23] 
Miscibility gap: [24], [25] 
 

[33] 

Associated Bingss [21] 
Tm(CaO) = 2900 °C [not mentioned] 
Miscibility gap: [24], [25] 
 

[34] 

 

CaO-SiO2

Not mentioned 
 

Ivtanthermo [21] [35] 
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Two-sublattice 
 

Thermo-Calc 
 

[36] 
Tm(CaO)   = 2900 °C [22] 
Liquidus: 49 <wt% Al2O3<  51.5 [37]  
Tm (C12A7) °C = 1392 [38]; 1400 [39]; 
1415 [40]; 1455 [1] 
Liquidus: 64 <wt% Al2O3< 100   [41] 
 

 

[42], 
[43] 
 

Modified quasichemical FactSage [36] 
Tm(CaO) = 2572 °C [30] 
Liquidus: 49 <wt% Al2O3<  51.5 [37] 
Liquidus: 64 <wt% Al2O3< 100   [41] 
 

[44] 

 

CaO-Al2O3

Associated 
 

Bingss [36] [34] 
 

Two-sublattice 
 

Thermo-Calc 
 

[45] 
Liquidus: [46], [47], [48], [49], [50] 
Field of mullite: [51], [52], [53], [54] 
 

 

[55] 

Modified quasichemical FactSage [45] 
Field of mullite: [51] 
 

[44] 

 

Al2O3-SiO2

Cellular 
 
 

Thermo-Calc Same of [55] 
Liquidus: [56] 
Invariant equilibria: [57], [58] 
 

[59] 

 
 

Associated FactSage [60], [45], [47], [51], [57] [61] 
 

Two-sublattice 
 

 

Thermo-Calc 
 

[21] 
 

[62] 
 

CaO-Al2O3-
SiO2

Modified quasichemical FactSage [21] [13], 
[44] 

 

2.2. Are the two-sublattice and modified quasichemical models 
significantly different? 

 Comparing the analytical expressions involved in the two models, Pelton 

established that the modified quasi-chemical model (MQM) and the ionic two-

sublattice model (also called RILM) are very similar [63]. In this paragraph, we 

validate this result for the composition range of a Portland clinker. 

 As shown in the introduction, the liquid of aluminates in Portland clinker 

is composed of the two main oxides CaO and Al2O3. Then, a good description of 

this liquid requires a good modelling of the liquid of CaO-Al2O3 phase diagram in 

a first approximation. The assessments of this phase diagram with the two-

sublattice and the modified quasichemical models [43, 44] were both performed 



with the same experimental phase diagram information (see Table 2, column 4), 

except for the choice of the melting temperature of CaO for which a discrepancy 

of about 300 °C (2900°C versus 2570 °C) is found, depending on the purity of the 

sample and the experimental method. Figure 2 superimposes the two calculated 

liquidi together with the experimental liquidus [36]. The two models produce very 

similar results in the temperature range of clinkerization (1400-1500 °C). 

Therefore, both models can be equally used. The highest deviation between the 

calculated liquidus and the experimental liquidus is observed in the CaO-rich part 

due to the different CaO melting points considered. Indeed, it is important to keep 

in mind that the assessed functions heavily depend on the choice of the selected 

experimental data. 

 In the following of the article, the calculations are performed using the 

Thermo-Calc software (version S) [64]. 
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2.3. Critical analysis of the ‘CAS’ binary sub-systems 

 Based on the a ssessed Gibbs energies available in literature (Table 2, 

column 5), Figs. 3, 4 and 5 show the calculated phase diagrams1 of CaO-SiO2, 

CaO-Al2O3, SiO2-Al2O3 systems, compared with the experimental data for the 

liquidi (Table 2, column 4) and the solid phase equilibria. Data from cement 

reference books are also superimposed. In the following discussion, we point out 

some experimental disagreements in the literature. 

 For the CaO-SiO2 system, the calculated phase diagram (Fig. 3) is 

compared to the experimental phase diagram of Levin [21] and the further 

modifications taken into account for the assessment, i.e. the melting temperature 

of CaO (2900°C instead of 2570°C) [22], the liquidus in the CaO-rich part of the 

diagram [23] and in the miscibility gap [24, 65]. We insist on the fact that the 

experimental liquidus reported in the current cement reference books [2, 3] does 

not include the most recent measurements, the melting point of CaO and the 

miscibility gap [23]. The measurements of Tewhey and Hess [24] in the 

miscibility gap seem commonly accepted. The melting temperature of CaO is still 

controversial (see § 2.2). 

 For the CaO-Al2O3 system, the more recent assessments [43] do not 

consider the C12A7 phase, since it is not strictly anhydrous [38]. In usual humidity 

air and in the temperature range 950-1350 °C, the C12A7 phase absorbs small 

content of water (1.3 wt% at most). For cement phase diagrams, C12A7 is then 

treated as an aluminate phase i.e. considered as anhydrous, and included in the 

phase diagrams [2, 3]. The C12A7 phase is an initial compound before the 

formation of C3A (Table 1). Figure 4 superimposes the calculated liquidus with 

most of the experimental data2 chosen for the assessments [1, 36] (Table 2). Once 

again, one observes some differences between the selected experimental data and 

the experimental diagram from Taylor [3], either for the CaO-rich part of the 

diagram or for the C12A7 compound. Indeed, discrepencies up to 40 °C for the 

melting temperature of C12A7 can be found in the literature: Taylor and Lea [2, 3] 

 
1 The triangular symbol in the left-hand corner of the diagrams indicates that the figure has been 

calculated with the Thermo-Calc software. The condensed oxide notation is used for the defined 

compounds, excepted for the CaO, SiO2 and Al2O3 components.  

 
2 Note that Rankin firstly assigned the C12A7 phase to C5A3. 



reported a 1415 °C melting temperature [40], whereas Hallstedt [42] deliberately 

favoured a 1455 °C melting temperature [1]. 

 For the SiO2-Al2O3 system, many measurements were required for the 

determination of liquidus and the field phase of mullite (Table 2, Fig. 5). For the 

mullite phase, no experimental data are available concerning the Al2O3-rich side 

for temperatures below 1500 °C. We emphasize the fact that Mao used a 1545 °C 

value for the eutectic melting point of cristobalite [46]. A value of 1587 °C [66] is 

sometimes preferred [ ]. 44
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Fig. 3. Calculated phase diagram of the CaO-SiO2 system. The calculated liquidus with the two-

sublattice model (black curve) is compared with most experimental data [21,22,23,24] and to the 

experimental liquidus from Taylor [3]. For the invariant equilibria (horizontal lines), the calculated 

temperatures are compared with the experimental ones written in parentheses. The experimental 

equilibrium at T=573 °C (dotted line) is not calculated because the β-quartz polymorph of SiO2 is 

not taken into account.  
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Fig. 4. Calculated phase diagram of the CaO-Al2O3 system. The calculated liquidus with the two-

sublattice model (black curve) is compared with most experimental data [1, 36] and with the 

experimental liquidus from Taylor [3]. For the invariant equilibria (horizontal lines), the calculated 

temperatures are compared with the experimental ones (in parentheses). 
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Fig. 5. Calculated phase diagram of the SiO2-Al2O3 system compared to most experimental data 

[45, 46, 50, 51, 53] (Table 2). For the invariant equilibria (horizontal lines), the calculated 

temperatures are compared with the experimental ones (in parentheses). 
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3. The CALPHAD method: a predictive tool for the 
thermodynamics of clinkers? 

 The main interest of the CALPHAD method is its ability to predict a 

ternary system from well-evaluated binary sub-systems. The efficiency of this 

method is illustrated here for the prediction of the ‘CAS’ system in the 

temperature and composition ranges of the clinkering zone (Table 1). In this 

section, we compare the phase diagram calculated by means of the extrapolation 

method of Muggianu to the fully optimized phase diagram evaluated by Mao et al. 

(Table 2). The results are shown as isothermal sections at T=1400 and 1500 °C. 

The calculations are carried out without taking into account the C12A7 phase, to 

better compare our results to those of Mao et al. [62]. 

 

In a first step, we calculate the ‘CAS’ ternary liquid using the 

extrapolation method of Muggianu; the knowledge of the three binary sub-

systems is sufficient here. No ternary terms are added. The ionic liquid is 

described by the two following sublattices: (Ca2+, Al3+)P( AlO2
-, O2-, SiO4

4-, 

SiO2,)Q. Figure 6a and c show the results of extrapolations for 1400 and 1500 °C, 

respectively. The calculated liquidus is compared to Rankin experimental liquidus 

[1]. The ‘C’ zone defined in Fig. 1 reports the typical clinkering zone of a 

Portland cement. Even if the ‘C’ zone is the only zone of interest in this study, the 

whole range of composition is reported for a global discussion of the CALPHAD 

approach. Hereafter, we will distinguish the field of the liquid of aluminates at the 

poor-SiO2 part of the diagram (0-15 wt% SiO2) from the field(s) of liquid in the 

richer-SiO2 part of the diagram (20-90 wt% SiO2). They will be respectively 

referred to as ‘A-liquid’ and ‘S-liquid’ fields. 

 In the ‘C’ zone, the predicted phases in equilibrium are as expected: C3S, 

C2S and the ‘A-liquid’ of composition Lc (Table 1), noted ‘A-liquid(Lc)’. C2S 

polymorphs are respectively α' and α for 1400 and 1500 °C. Considering the 

experimental uncertainty (see footnote of Table 2), the calculated composition Lc, 

Lc(calc), is overestimated by about 3-4 wt% SiO2 and underestimated by about 

5 wt% Al2O3 with respect to the Rankin Lc(exp) experimental composition [1] 

(Table 3). However, the shape of the liquidus is quite well reproduced.  
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 Outside the clinkering zone, in the richer-SiO2 part of the diagram, the 

liquidus of ‘S-liquid’ is not well reproduced. It shows that the strong ternary 

interactions (ternary solid compounds, ternary liquid interactions) that exist in this 

region of the phase diagram should be taken into account. In 2006, Mao et al. 

evaluated anorthite (A) and gehlenite (G), both ternary solid compounds outside 

the clinkering zone of interest, and also the ternary interactions of the liquid. 

 
 In the second step, all the parameters of the fully optimised system of Mao 

are now considered (Fig. 6b, d). In this step, no change is found in the ‘A-liquid’, 

but the ‘S-liquid’ is now well reproduced. Indeed, Mao et al. essentially focused 

on the ‘S-liquid’ field, in order to get a proper description of the liquid miscibility 

gap in the ternary system. 

 

 The compositions Lc(calc) calculated from extrapolation or from the full 

optimisation are given in Table 3. The value of Lc(calc) is not sensitive to the 

addition of any ternary interactions. Table 4 gives the resulting proportions for a 

typical white Portland clinker (70 wt% CaO, 25 wt% SiO2 and 5 wt% Al2O3). The 

major differences are observed for the proportions of the C2S and liquid phases, 

with a maximum difference about 4.5% for T=1500 °C. 

 

 In conclusion, the prediction of the ternary ‘CAS’ phase diagram with the 

extrapolation method is relevant in the clinkering zone of interest. All the 

compositions, that of the ‘A-liquid’ and those of the three phases in equilibrium, 

can be estimated with a reasonable accuracy. If more precision is required for the 

‘A-liquid’ in the clinkering zone, the assessment of Mao et al. can be improved by 

additional measurements in this zone, such as those of activities of Al2O3 in the 

liquid. 
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Fig. 6. Isothermal sections at T=1400 °C (a, b) and T=1500 °C (c, d) issued from the calculations 

of the ‘CAS’ system. The grey lines are the tie lines of two-phase equilibrium fields, and the other 

thick lines delimitate the three-phase equilibrium fields. The grey-coloured domains are the liquid 

fields. The dotted lines show the experimental liquidus [1]. The ‘C’ zone designates the typical 

clinkering zone of Portland cement (Fig. 1). Lc(calc) and Lc(exp) are respectively the calculated 

and experimental compositions of the liquid of aluminates (A-liquid) in the clinkering zone. M = 

Mullite. (a, c) calculation of the ‘CAS’ system from the Muggianu extrapolation (b, d) adding the 

ternary interactions: gehlenite and anorthite solid phases, and the ternary liquid interactions.  
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Table 3 

Calculated composition Lc(calc) of the liquid of aluminates in equilibrium with C3S and C2S at 

T=1400 °C and T=1500 °C, with the two steps of calculations of Fig. 6. The last column gives the 

Rankin experimental composition Lc(exp) deduced graphically [1].  
 

  Lc(calc) Lc(exp) 
 Step (extrapolation) (assessment)  

T=1400 °C   wt% CaO 57.7 57.7 55 
  wt% Al2O3 31.8 31.8 37 
 wt% SiO2 10.5 10.5 8 

T=1500 °C wt% CaO 59.5 59.5 59 
  wt% Al2O3 26.9 26.9 32 
 wt% SiO2 13.6 13.6 9 

 

Table 4 

Calculated and experimental proportions (wt%) of the three phases in equilibrium Liquid(Lc) + 

C2S + C3S at T=1400 °C and T=1500 °C, for a given white Portland clinker of composition 

70 wt% CaO, 25 wt% SiO2 and 5 wt% Al2O3. The experimental proportions are estimated with the 

lever rule from the Rankin experimental diagram [1].  
 

 wt% Calc. Exp. 
T=1400 °C Liquid (Lc) 15.7 13 

 α’-C2S 14.8 16 
 C3S 69.5 71 

T=1500 °C Liquid (Lc) 18.6 14 
 α-C2S 12.1 16 
 C3S 69.3 70 

 

5. Towards thermodynamic databases for cement 
materials 

 
 This last part compares advances of the available oxide databases 

developed with the three models (associated, modified quasichemical and ionic 

two-sublattice models) to compute the quaternary system CaO-SiO2-Al2O3-Fe2O3 

(‘CASF’) and to take into account minor oxides such as MgO, SO3, P2O5 and 

alkalis.  

 

 The calculation of the quaternary phase diagram ‘CASF’ requires the 

knowledge of the ‘CAS’ system and the three other ternary phase diagrams: CaO-

Al2O3-Fe2O3, CaO-SiO2-Fe2O3, and Al2O3-Fe2O3-SiO2. All the three binary sub-

systems (CaO-Fe2O3, Al2O3-Fe2O3, and SiO2-Fe2O3) have been fully optimized 
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with the three models [18, 67-69] except the Al2O3-Fe2O3 system that has not 

been evaluated yet with the two-sublattice model (ION3 database). FToxid 

database recently included Fe2O3: the ternary solid compound C4AF is modelled 

and the ternary and higher order liquids are well extrapolated. NPL oxide database 

takes into account Fe2O3 as well as for C4AF as for the liquid.  

 

 For the case of MgO oxide, data are available in the literature. The three 

ternary systems Al2O3-CaO-MgO, Al2O3-MgO-SiO2 and CaO-MgO-SiO2 have 

been fully assessed, both with the two-sublattice model [28, 70, 71] and the 

modified quasichemical model [72, 73]. As far as there is no quaternary solid 

compound stabilized in the Portland clinker zone, extrapolation to the quaternary 

system CaO-Al2O3-SiO2-MgO is applied in the various databases.  

 

 For the other minor oxides of interest, the situation is very different. 

Because the modelling of oxides and commercial interests are still recent, no 

optimized data for the binary phase diagrams of CaO, SiO2 or Al2O3 with SO3, 

CaF2 or P2O5 have been published. However, FT-oxid database has recently 

included SO3 [19], CaF2 and alkalis (Na2O, K2O) and can be used for cement 

industry. The Gibbs energy modelling of phosphate phases is already in progress 

and need further investigations.  
 

 

 

6. Conclusion 

 

 Based on a literature review, we have pointed out that some 

discrepancies still remain concerning several melting points and that the phase 

diagram data in the current cement reference books are not complete and up to 

date. We have also shown that both the two-sublattices model and the modified 

quasi-chemical model for liquids are relevant up to the calculation of the ternary 

CaO-Al2O3-SiO2 (‘CAS’) system. Differences between the calculations depend on 

the choice of the selected experimental data for the assessments. The predictive 

feature of the CALPHAD method for the calculation of multi-component phase 

diagrams is illustrated on the ‘CAS’ ternary phase diagram. As there are no strong 
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ternary interactions in the clinkering zone of interest, a relevant preliminary phase 

diagram can be obtained from extrapolation. This predictive method appears as a 

useful tool to estimate the composition Lc and the proportion of liquid in the 

clinkering zone. For the time being, the composition Lc can be obtained with 

average deviations from experiments of about 3-4 wt% SiO2 and 5 wt% Al2O3. 

Additional assessments ought to be performed for a better accuracy around the Lc 

composition. 

 

 The CALPHAD methodology is applied in commercial databases (NPL 

oxide, FToxid and ION3) for further calculations of higher order systems, in 

particular including Fe2O3, MgO, SO3, P2O5 and alkalis. Considering the data 

published up to now, the thermodynamic modelling of iron (or other minor 

elements)-containing liquids have not reached the same level of relevance for the 

three models. Since a decade, Factsage and MTDATA communities develop the 

most extensive databases for cement industry, based on the associated and 

modified quasichemical models. 
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