1,513 research outputs found

    Septum and kicker magnets for the ALBA Booster and storage ring

    Get PDF

    A Search for Distant Galactic Cepheids Toward l=60

    Get PDF
    We present results of a survey of a 6-square-degree region near l=60, b=0 to search for distant Milky Way Cepheids. Few MW Cepheids are known at distances >~ R_0, limiting large-scale MW disk models derived from Cepheid kinematics; this work was designed to find a sample of distant Cepheids for use in such models. The survey was conducted in the V and I bands over 8 epochs, to a limiting I~=18, with a total of ~ 5 million photometric observations of ~ 1 million stars. We present a catalog of 578 high-amplitude variables discovered in this field. Cepheid candidates were selected from this catalog on the basis of variability and color change, and observed again the following season. We confirm 10 of these candidates as Cepheids with periods from 4 to 8 days, most at distances > 3 kpc. Many of the Cepheids are heavily reddened by intervening dust, some with implied extinction A_V > 10 mag. With a future addition of infrared photometry and radial velocities, these stars alone can provide a constraint on R_0 to 8%, and in conjunction with other known Cepheids should provide good estimates of the global disk potential ellipticity.Comment: 18 pages, 4 tables, 13 figures (LaTeX / AASTeX

    Is Cosmology Solved?

    Get PDF
    We have fossil evidence from the thermal background radiation that our universe expanded from a considerably hotter denser state. We have a well defined and testable description of the expansion, the relativistic Friedmann-Lemaitre model. Its observational successes are impressive but I think hardly enough for a convincing scientific case. The lists of observational constraints and free hypotheses within the model have similar lengths. The scorecard on the search for concordant measures of the mass density parameter and the cosmological constant shows that the high density Einstein-de Sitter model is challenged, but that we cannot choose between low density models with and without a cosmological constant. That is, the relativistic model is not strongly overconstrained, the usual test of a mature theory. Work in progress will greatly improve the situation and may at last yield a compelling test. If so, and the relativistic model survives, it will close one line of research in cosmology: we will know the outlines of what happened as our universe expanded and cooled from high density. It will not end research: some of us will occupy ourselves with the details of how galaxies and other large-scale structures came to be the way they are, others with the issue of what our universe was doing before it was expanding. The former is being driven by rapid observational advances. The latter is being driven mainly by theory, but there are hints of observational guidance.Comment: 13 pages, 3 figures. To be published in PASP as part of the proceedings of the Smithsonian debate, Is Cosmology Solved

    Intense field stabilization in circular polarization: 3D time-dependent dynamics

    Get PDF
    We investigate the stabilization of a hydrogen atom in circularly polarized laser fields. We use a time-dependent, fully three dimensional approach to study the quantum dynamics of the hydrogen atom subject to high intensity, short wavelength laser pulses. We find enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wavepacket dynamics seen in prior time-dependent computations restricted to two dimensions.Comment: 4 pages, 3 figures, submitte

    Temperature-Pressure Profile of the hot Jupiter HD 189733b from HST Sodium Observations: Detection of Upper Atmospheric Heating

    Full text link
    We present transmission spectra of the hot Jupiter HD 189733b taken with the Space Telescope Imaging Spectrograph aboard HST. The spectra cover the wavelength range 5808-6380 Ang with a resolving power of R=5000. We detect absorption from the NaI doublet within the exoplanet's atmosphere at the 9 sigma confidence level within a 5 Ang band (absorption depth 0.09 +/- 0.01%) and use the data to measure the doublet's spectral absorption profile. We detect only the narrow cores of the doublet. The narrowness of the feature could be due to an obscuring high-altitude haze of an unknown composition or a significantly sub-solar NaI abundance hiding the line wings beneath a H2 Rayleigh signature. We compare the spectral absorption profile over 5.5 scale heights with model spectral absorption profiles and constrain the temperature at different atmospheric regions, allowing us to construct a vertical temperature profile. We identify two temperature regimes; a 1280 +/- 240 K region derived from the NaI doublet line wings corresponding to altitudes below ~ 500 km, and a 2800 +/- 400 K region derived from the NaI doublet line cores corresponding to altitudes from ~ 500-4000 km. The zero altitude is defined by the white-light radius of Rp/Rstar=0.15628 +/- 0.00009. The temperature rises with altitude, which is likely evidence of a thermosphere. The absolute pressure scale depends on the species responsible for the Rayleigh signature and its abundance. We discuss a plausible scenario for this species, a high-altitude silicate haze, and the atmospheric temperature-pressure profile that results. In this case, the high altitude temperature rise for HD 189733b occurs at pressures of 10^-5 to 10^-8 bar

    Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS

    Get PDF
    We present Hubble Space Telescope near-infrared transit photometry of the nearby hot-Jupiter HD189733b. The observations were taken with the NICMOS instrument during five transits, with three transits executed with a narrowband filter at 1.87 microns and two performed with a narrowband filter at 1.66 microns. Our observing strategy using narrowband filters is insensitive to the usual HST intra-orbit and orbit-to-orbit measurement of systematic errors, allowing us to accurately and robustly measure the near-IR wavelength dependance of the planetary radius. Our measurements fail to reproduce the Swain et al. absorption signature of atmospheric water below 2 microns at a 5-sigma confidence level. We measure a planet-to-star radius contrast of 0.15498+/-0.00035 at 1.66 microns and a contrast of 0.15517+/-0.00019 at 1.87 microns. Both of our near-IR planetary radii values are in excellent agreement with the levels expected from Rayleigh scattering by sub-micron haze particles, observed at optical wavelengths, indicating that upper-atmospheric haze still dominates the near-IR transmission spectra over the absorption from gaseous molecular species at least below 2 microns.Comment: 9 pages, 7 figures. Accepted for publication in A&

    Die gepulsten Magnete bei ANKA

    Get PDF

    GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    Get PDF
    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS instrument, enabling differential specrophotometric transit lightcurves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300{\AA}. We find that sub-mmag level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ~1000{\AA} regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimising the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50{\AA} bandpass centred on the Na I doublet, with absorption depths of Delta(R_pl/R_star)^2=0.049+/-0.017 % using the R500R grism and 0.047+/-0.011 % using the R500B grism (combined 5.2-sigma significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ~800{\AA} region surrounding the doublet. Combined with narrowband photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA

    Gran Telescopio Canarias OSIRIS Transiting Exoplanet Atmospheric Survey: Detection of potassium in XO-2b from narrowband spectrophotometry

    Get PDF
    We present Gran Telescopio Canarias (GTC) optical transit narrow-band photometry of the hot-Jupiter exoplanet XO-2b using the OSIRIS instrument. This unique instrument has the capabilities to deliver high cadence narrow-band photometric lightcurves, allowing us to probe the atmospheric composition of hot Jupiters from the ground. The observations were taken during three transit events which cover four wavelengths at spectral resolutions near 500, necessary for observing atmospheric features, and have near-photon limited sub-mmag precisions. Precision narrow-band photometry on a large aperture telescope allows for atmospheric transmission spectral features to be observed for exoplanets around much fainter stars than those of the well studied targets HD209458b and HD189733b, providing access to the majority of known transiting planets. For XO-2b, we measure planet-to-star radius contrasts of R_pl/R_star=0.10508+/-0.00052 at 6792 Ang, 0.10640+/-0.00058 at 7582 Ang, and 0.10686+/-0.00060 at 7664.9 Ang, and 0.10362+/-0.00051 at 8839 Ang. These measurements reveal significant spectral features at two wavelengths, with an absorption level of 0.067+/-0.016% at 7664.9 Ang due to atmospheric potassium in the line core (a 4.1-sigma significance level), and an absorption level of 0.058+/-0.016% at 7582 Ang, (a 3.6-sigma significance level). When comparing our measurements to hot-Jupiter atmospheric models, we find good agreement with models which are dominated in the optical by alkali metals. This is the first evidence for potassium in an extrasolar planet, an element that has long been theorized along with sodium to be a dominant source of opacity at optical wavelengths for hot Jupiters.Comment: 11 pages, 6 figures, accepted in A&A, minor changes to wording, primarily section 4.2, and the title has also been slightly modifie
    corecore