2,317 research outputs found
Intense field stabilization in circular polarization: 3D time-dependent dynamics
We investigate the stabilization of a hydrogen atom in circularly polarized
laser fields. We use a time-dependent, fully three dimensional approach to
study the quantum dynamics of the hydrogen atom subject to high intensity,
short wavelength laser pulses. We find enhanced survival probability as the
field is increased under fixed envelope conditions. We also confirm wavepacket
dynamics seen in prior time-dependent computations restricted to two
dimensions.Comment: 4 pages, 3 figures, submitte
The `666' collaboration on OGLE transits: I. Accurate radius of the planets OGLE-TR-10b and OGLE-TR-56b with VLT deconvolution photometry
Transiting planets are essential to study the structure and evolution of
extra-solar planets. For that purpose, it is important to measure precisely the
radius of these planets. Here we report new high-accuracy photometry of the
transits of OGLE-TR-10 and OGLE-TR-56 with VLT/FORS1. One transit of each
object was covered in Bessel V and R filters, and treated with the
deconvolution-based photometry algorithm DECPHOT, to ensure accurate
millimagnitude light curves. Together with earlier spectroscopic measurements,
the data imply a radius of 1.22 +0.12-0.07 R_J for OGLE-TR-10b and 1.30 +- 0.05
R_J for OGLE-TR-56b. A re-analysis of the original OGLE photometry resolves an
earlier discrepancy about the radius of OGLE-TR-10. The transit of OGLE-TR-56
is almost grazing, so that small systematics in the photometry can cause large
changes in the derived radius. Our study confirms both planets as inflated hot
Jupiters, with large radii comparable to that of HD 209458 and at least two
other recently discovered transiting gas giants.Comment: Fundamental updates compared to previous version; accepted for
publication in Astronomy & Astrophysic
Is Cosmology Solved?
We have fossil evidence from the thermal background radiation that our
universe expanded from a considerably hotter denser state. We have a well
defined and testable description of the expansion, the relativistic
Friedmann-Lemaitre model. Its observational successes are impressive but I
think hardly enough for a convincing scientific case. The lists of
observational constraints and free hypotheses within the model have similar
lengths. The scorecard on the search for concordant measures of the mass
density parameter and the cosmological constant shows that the high density
Einstein-de Sitter model is challenged, but that we cannot choose between low
density models with and without a cosmological constant. That is, the
relativistic model is not strongly overconstrained, the usual test of a mature
theory. Work in progress will greatly improve the situation and may at last
yield a compelling test. If so, and the relativistic model survives, it will
close one line of research in cosmology: we will know the outlines of what
happened as our universe expanded and cooled from high density. It will not end
research: some of us will occupy ourselves with the details of how galaxies and
other large-scale structures came to be the way they are, others with the issue
of what our universe was doing before it was expanding. The former is being
driven by rapid observational advances. The latter is being driven mainly by
theory, but there are hints of observational guidance.Comment: 13 pages, 3 figures. To be published in PASP as part of the
proceedings of the Smithsonian debate, Is Cosmology Solved
Wall effects on granular heap stability
We investigate the effects of lateral walls on the angle of movement and on
the angle of repose of a granular pile. Our experimental results for beads
immersed in water are similar to previous results obtained in air and to recent
numerical simulations. All of these results, showing an increase of pile angles
with a decreasing gap width, are explained by a model based on the redirection
of stresses through the granular media. Two regimes are observed depending on
the bead diameter. For large beads, the range of wall effects corresponds to a
constant number of beads whereas it corresponds to a constant characteristic
length for small beads as they aggregate via van der Waals forces
The spin-orbit angle of the transiting hot jupiter CoRoT-1b
We measure the angle between the planetary orbit and the stellar rotation
axis in the transiting planetary system CoRoT-1, with new HIRES/Keck and
FORS/VLT high-accuracy photometry. The data indicate a highly tilted system,
with a projected spin-orbit angle lambda = 77 +- 11 degrees. Systematic
uncertainties in the radial velocity data could cause the actual errors to be
larger by an unknown amount, and this result needs to be confirmed with further
high-accuracy spectroscopic transit measurements.
Spin-orbit alignment has now been measured in a dozen extra-solar planetary
systems, and several show strong misalignment. The first three misaligned
planets were all much more massive than Jupiter and followed eccentric orbits.
CoRoT-1, however, is a jovian-mass close-in planet on a circular orbit. If its
strong misalignment is confirmed, it would break this pattern. The high
occurence of misaligned systems for several types of planets and orbits favours
planet-planet scattering as a mechanism to bring gas giants on very close
orbits.Comment: to appear in in MNRAS letters [5 pages
Self interacting Brans Dicke cosmology and Quintessence
Recent cosmological observations reveal that we are living in a flat
accelerated expanding universe. In this work we have investigated the nature of
the potential compatible with the power law expansion of the universe in a self
interacting Brans Dicke cosmology with a perfect fluid background and have
analyzed whether this potential supports the accelerated expansion. It is found
that positive power law potential is relevant in this scenario and can drive
accelerated expansion for negative Brans Dicke coupling parameter . The
evolution of the density perturbation is also analyzed in this scenerio and is
seen that the model allows growing modes for negative .Comment: 8pages, 5 figures, PRD style, some changes are made, figures added,
reference added. To be published in Int. J. Mod. Phys.
Hyperspherical partial wave calculation for double photoionization of the helium atom at 20 eV excess energy
Hyperspherical partial wave approach has been applied here in the study of
double photoionization of the helium atom for equal energy sharing geometry at
20 eV excess energy. Calculations have been done both in length and velocity
gauges and are found to agree with each other, with the CCC results and with
experiments and exhibit some advantages of the corresponding three particle
wave function over other wave functions in use.Comment: 11 pages, 1 figure, submitted to J. Phys B: At. Mol. Opt. Phys; v2 -
revised considerably, rewritten using ioplatex clas
An ingress and a complete transit of HD 80606 b
We have used four telescopes at different longitudes to obtain
near-continuous lightcurve coverage of the star HD 80606 as it was transited by
its \sim 4-MJup planet. The observations were performed during the predicted
transit windows around the 25th of October 2008 and the 14th of February 2009.
Our data set is unique in that it simultaneously constrains the duration of the
transit and the planet's period. Our Markov-Chain Monte Carlo analysis of the
light curves, combined with constraints from radial-velocity data, yields
system parameters consistent with previously reported values. We find a
planet-to-star radius ratio marginally smaller than previously reported,
corresponding to a planet radius of Rp = 0.921 \pm 0.036RJup .Comment: 6 pages, 2 figures, MNRAS accepte
A cool starspot or a second transiting planet in the TrES-1 system?
We investigate the origin of a flux increase found during a transit of
TrES-1, observed with the HST. This feature in the HST light curve cannot be
attributed to noise and is supposedly a dark area on the stellar surface of the
host star eclipsed by TrES-1 during its transit. We investigate the likeliness
of two possible hypothesis for its origin: A starspot or a second transiting
planet. We made use of several transit observations of TrES-1 from space with
the HST and from ground with the IAC-80 telescope. On the basis of these
observations we did a statistical study of flux variations in each of the
observed events, to investigate if similar flux increases are present in other
parts of the data set. The HST observation presents a single clear flux rise
during a transit whereas the ground observations led to the detection of two
such events but with low significance. In the case of having observed a
starspot in the HST data, assuming a central impact between the spot and
TrES-1, we would obtain a lower limit for the spot radius of 42000 km. For this
radius the spot temperature would be 4690 K, 560 K lower then the stellar
surface of 5250 K. For a putative second transiting planet we can set a lower
limit for its radius at 0.37 R and for periods of less than 10.5 days, we
can set an upper limit at 0.72 R. Assuming a conventional interpretation,
then this HST observation constitutes the detection of a starspot.
Alternatively, this flux rise might also be caused by an additional transiting
planet. The true nature of the origin can be revealed if a wavelength
dependency of the flux rise can be shown or discarded with a higher certainty.
Additionally, the presence of a second planet can also be detected by radial
velocity measurements.Comment: 8 pages, 6 figures, accepted for publication in A&
New limits on and from old galaxies at high redshift
The ages of two old galaxies (53W091, 53W069) at high redshifts are used to
constrain the value of the cosmological constant in a flat universe
(CDM) and the density parameter in
Friedmann-Robertson-Walker (FRW) models with no -term. In the case of
CDM models, the quoted galaxies yield two lower limits for the vacuum
energy density parameter, and , respectively. Although compatible with the limits from statistics of
gravitational lensing (SGL) and cosmic microwave background (CMB), these lower
bounds are more stringent than the ones recently determined using SNe Ia as
standard candles. For matter dominated universes (), the
existence of these galaxies imply that the universe is open with the matter
density parameter constrained by and ,
respectively. In particular, these results disagree completely with the
analysis of field galaxies which gives a lower limit .Comment: submitted to Astrophysical Journal Letters, 16 ApJ preprint pages
including 4 figure
- …