10 research outputs found

    OX40L blockade protects against inflammation-driven fibrosis.

    No full text
    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40-OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation

    T-cell costimulation blockade is effective in experimental digestive and lung tissue fibrosis

    No full text
    Abstract Background We aimed to investigate the efficacy of abatacept in preclinical mouse models of digestive involvement, pulmonary fibrosis, and related pulmonary hypertension (PH), mimicking internal organ involvement in systemic sclerosis (SSc). Methods Abatacept has been evaluated in the chronic graft-versus-host disease (cGvHD) mouse model (abatacept 1 mg/mL for 6 weeks), characterized by liver and intestinal fibrosis and in the Fra-2 mouse model (1 mg/mL or 10 mg/mL for 4 weeks), characterized by interstitial lung disease (ILD) and pulmonary vascular remodeling leading to PH. Results In the cGvHD model, abatacept significantly decreased liver transaminase levels and markedly improved colon inflammation. In the Fra-2 model, abatacept alleviated ILD, with a significant reduction in lung density on chest microcomputed tomography (CT), fibrosis histological score, and lung biochemical markers. Moreover, abatacept reversed PH in Fra-2 mice by improving vessel remodeling and related cardiac hemodynamic impairment. Abatacept significantly reduced fibrogenic marker levels, T-cell proliferation, and M1/M2 macrophage infiltration in lesional lungs of Fra-2 mice. Conclusion Abatacept improves digestive involvement, prevents lung fibrosis, and attenuates PH. These findings suggest that abatacept might be an appealing therapeutic approach beyond skin fibrosis for organ involvement in SSc

    T cell costimulation blockade blunts pressure overload-induced heart failure

    Get PDF
    18nonenoneKallikourdis, Marinos; Martini, Elisa; Carullo, Pierluigi; Sardi, Claudia; Roselli, Giuliana; Greco, Carolina M.; Vignali, Debora; Riva, Federica; Ormbostad Berre, Anne Marie; Stølen, Tomas O.; Fumero, Andrea; Faggian, Giuseppe; Di Pasquale, Elisa; Elia, Leonardo; Rumio, Cristiano; Catalucci, Daniele; Papait, Roberto; Condorelli, GianluigiKallikourdis, Marinos; Martini, Elisa; Carullo, Pierluigi; Sardi, Claudia; Roselli, Giuliana; Greco, Carolina M.; Vignali, Debora; Riva, Federica; Ormbostad Berre, Anne Marie; Stølen, Tomas O.; Fumero, Andrea; Faggian, Giuseppe; Di Pasquale, Elisa; Elia, Leonardo; Rumio, Cristiano; Catalucci, Daniele; Papait, Roberto; Condorelli, Gianluig
    corecore