168 research outputs found

    Clinical experience with power-injectable PICCs in intensive care patients

    Get PDF
    Introduction: In the ICU, peripherally inserted central catheters (PICCs) may be an alternative option to standard central venous catheters, particularly in patients with coagulation disorders or at high risk for infection. Some limits of PICCs (such as low flow rates) may be overcome with the use of power-injectable catheters.Methods: We retrospectively reviewed all of the power-injectable PICCs inserted in adult and pediatric patients in the ICU during a 12-month period, focusing on the rate of complications at insertion and during maintenance.Results: We collected 89 power-injectable PICCs (in adults and in children), both multiple and single lumen. All insertions were successful. There were no major complications at insertion and no episodes of catheter-related bloodstream infection. Non-infective complications during management were not clinically significant. There was one episode of symptomatic thrombosis during the stay in the ICU and one episode after transfer of a patient to a non-intensive ward.Conclusion: Power-injectable PICCs have many advantages in the ICU: they can be used as multipurpose central lines for any type of infusion including high-flow infusion, for hemodynamic monitoring, and for high-pressure injection of contrast media during radiological procedures. Their insertion is successful in 100% of cases and is not associated with significant risks, even in patients with coagulation disorders. Their maintenance is associated with an extremely low rate of infective and non-infective complications. © 2012 Pittiruti et al.; licensee BioMed Central Ltd

    Wood in buildings: the right answer to the wrong question

    Get PDF
    Reducing the embodied emissions of materials for new construction and renovation of buildings is a key challenge for climate change mitigation around the world. However, as simply reducing emissions is not sufficient to meet the climate targets, using bio-based materials seems the only feasible choice as it permits carbon storage in buildings. Various studies have shown that bio-based materials allow turning overall life cycle impacts negative, therefore, having a cooling effect on the climate. In recent years, scholars and policy makers have focused almost exclusively on the advancement of wooden buildings. Timber structures stand out as they can be prefabricated and used for high-rise buildings. Yet, one important aspect seems to be overlooked: the consideration of supply and demand. Large forest areas that allow sustainable sourcing of woody biomass only exist in the Northern hemisphere, notably in North America and Europe. In these regions, though, urbanization rates are mostly stagnating, meaning new construction rates are low. The largest amount of material requirements in these regions are derived from the refurbishment of the existing stock. Moreover, in areas where structural material is needed for new construction, in Asia, Africa and South America, rain forests need to be protected. Therefore, we need to rethink the desire to find one solution and carelessly implement it everywhere. Instead, we need to consider locally available material and know-how for grounded material choices. This paper explores the supply of a range of bio-based materials and matches it against the material demand of global building stocks. It is based on various previous studies by the authors, of South Africa, China, Portugal, and more. The analysis divides between structural materials for new construction, such as wood and bamboo, and thermal insulation materials for the refurbishment of existing buildings, such as straw and hemp. The results emphasize the need for diversifying bio-based material solutions

    PTPN11 mutations are not responsible for the Cardiofaciocutaneous (CFC) syndrome

    Get PDF
    Cardiofaciocutaneous (CFC) syndrome is a multiple congenital anomalies/mental retardation syndrome characterized by congenital heart defects, characteristic facial appearance, short stature, ectodermal abnormalities and mental retardation. It was described in 1986, and to date is of unknown genetic etiology. All reported cases are sporadic, born to non-consanguineous parents and have apparently normal chromosomes. Noonan and Costello syndromes remain its main differential diagnosis. the recent finding of PTPN11 missense mutations in 45-50% of the Noonan patients studied with penetrance of almost 100% and the fact that in animals mutations of this gene cause defects of semilunar valvulogenesis, made PTPN11 mutation screening in CFC patients a matter of interest. We sequenced the entire coding region of the PTPN11 gene in ten well-characterised CFC patients and found no base changes. We also studied PTPN11 cDNA in our patients and demonstrated that there are no interstitial deletions either. the genetic cause of CFC syndrome remains unknown, and PTPN11 can be reasonably excluded as a candidate gene for the CFC syndrome, which we regard as molecular evidence that CFC and Noonan syndromes are distinct genetic entities.Univ Sacred Heart, Ist Genet Med, I-00168 Rome, ItalyUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilWeb of Scienc

    Investigating relationships between cost and CO<sub>2</sub> emissions in reinforced concrete structures using a BIM-based design optimisation approach

    Get PDF
    An integrated design approach for the cost and embodied carbon optimisation of reinforced concrete structures is presented in this paper to inform early design decisions. A BIM-based optimisation approach that utilises Finite Element Modelling (FEM) and a multi-objective genetic algorithm with constructability constraints is established for that purpose. A multilevel engineering analysis model is developed to perform structural layout optimisation, slab and columns sizing optimisation, and slab and columns reinforcement optimisation. The overall approach is validated using real buildings and the relationships between cost and carbon optimum solutions are explored. The study exhibits how cost effective and carbon efficient solutions could be obtained without compromising the feasibility of the optimised designs. Results demonstrate that the structural layout and the slab thickness are amongst the most important design optimisation parameters. Finally, the overall analysis suggests that the building form can influence the relationships between cost and carbon for the different structural components

    Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches – IEA EBC Annex 72

    Get PDF
    Introduction: The international research project IEA EBC Annex 72 investigates the life cycle related environmental impacts caused by buildings. The project aims inter alia to harmonise LCA approaches on buildings. Methods: To identify major commonalities and discrepancies among national LCA approaches, reference buildings were defined to present and compare the national approaches. A residential high-rise building located in Tianjin, China, was selected as one of the reference buildings. The main construction elements are reinforced concrete shear walls, beams and floor slabs. The building has an energy reference area of 4566 m2 and an operational heating energy demand of 250 MJ/m2a. An expert team provided information on the quantities of building materials and elements required for the construction, established a BIM model and quantified the operational energy demand. Results: The greenhouse gas emissions and environmental impacts of the building were quantified using 17 country-specific national assessment methods and LCA databases. Comparisons of the results are shown on the level of building elements as well as the complete life cycle of the building. Conclusions: The results of these assessments show that the main differences lie in the LCA background data used, the scope of the assessment and the reference study period applied. Despite the variability in the greenhouse gas emissions determined with the 17 national methods, the individual results are relevant in the respective national context of the method, data, tool and benchmark used. It is important that environmental benchmarks correspond to the particular LCA approach and database of a country in which the benchmark is applied. Furthermore, the results imply to include building technologies as their contribution to the overall environmental impacts is not negligible. Grant support: The authors thank the IEA for its organizational support and the funding organizations in the participating countries for their financial support.IEA -International Energy Agency(undefined

    Challenges for Allergy Diagnosis in Regions with Complex Pollen Exposures

    Get PDF
    Over the past few decades, significant scientific progress has influenced clinical allergy practice. The biological standardization of extracts was followed by the massive identification and characterization of new allergens and their progressive use as diagnostic tools including allergen micro arrays that facilitate the simultaneous testing of more than 100 allergen components. Specific diagnosis is the basis of allergy practice and is always aiming to select the best therapeutic or avoidance intervention. As a consequence, redundant or irrelevant information might be adding unnecessary cost and complexity to daily clinical practice. A rational use of the different diagnostic alternatives would allow a significant improvement in the diagnosis and treatment of allergic patients, especially for those residing in complex pollen exposure areas

    45S rDNA Regions Are Chromosome Fragile Sites Expressed as Gaps In Vitro on Metaphase Chromosomes of Root-Tip Meristematic Cells in Lolium spp

    Get PDF
    BACKGROUND: In humans, chromosome fragile sites are regions that are especially prone to forming non-staining gaps, constrictions or breaks in one or both of the chromatids on metaphase chromosomes either spontaneously or following partial inhibition of DNA synthesis and have been well identified. So far, no plant chromosome fragile sites similar to those in human chromosomes have been reported. METHODS AND RESULTS: During the course of cytological mapping of rDNA on ryegrass chromosomes, we found that the number of chromosomes plus chromosome fragments was often more than the expected 14 in most cells for Lolium perenne L. cv. Player by close cytological examination using a routine chromosome preparation procedure. Further fluorescent in situ hybridization (FISH) using 45S rDNA as a probe indicated that the root-tip cells having more than a 14-chromosome plus chromosome fragment count were a result of chromosome breakage or gap formation in vitro (referred to as chromosome lesions) at 45S rDNA sites, and 86% of the cells exhibited chromosome breaks or gaps and all occurred at the sites of 45S rDNA in Lolium perenne L. cv. Player, as well as in L. multiflorum Lam. cv. Top One. Chromatin depletion or decondensation occurred at various locations within the 45S rDNA regions, suggesting heterogeneity of lesions of 45S rDNA sites with respect to their position within the rDNA region. CONCLUSIONS: The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes, and thus we conclude that the high frequency of chromosome lesions in vitro in Lolium species is the result of the expression of 45S rDNA fragile sites. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are discussed

    IgE Recognition Patterns of Profilin, PR-10, and Tropomyosin Panallergens Tested in 3,113 Allergic Patients by Allergen Microarray-Based Technology

    Get PDF
    BACKGROUND: IgE recognition of panallergens having highly conserved sequence regions, structure, and function and shared by inhalant and food allergen sources is often observed. METHODS: We evaluated the IgE recognition profile of profilins (Bet v 2, Cyn d 12, Hel a 2, Hev b 8, Mer a 1, Ole e 2, Par j 3, Phl p 12, Pho d 2), PR-10 proteins (Aln g 1, Api g 1, Bet v 1.0101, Bet v 1.0401, Cor a 1, Dau c 1 and Mal d 1.0108) and tropomyosins (Ani s 3, Der p 10, Hel as 1, Pen i 1, Pen m 1, Per a 7) using the Immuno-Solid phase Allergen Chip (ISAC) microarray system. The three panallergen groups were well represented among the allergenic molecules immobilized on the ISAC. Moreover, they are distributed in several taxonomical allergenic sources, either close or distant, and have a route of exposure being either inhalation or ingestion. RESULTS: 3,113 individuals (49.9% female) were selected on the basis of their reactivity to profilins, PR-10 or tropomyosins. 1,521 (48.8%) patients were reactive to profilins (77.6% Mer a 1 IgE(+)), 1,420 (45.6%) to PR-10 (92.5% Bet v 1 IgE(+)) and 632 (20.3%) to tropomyosins (68% Der p 10 IgE(+)). A significant direct relationship between different representative molecules within each group of panallergens was found. 2,688 patients (86.4%) recognized only one out of the three distinct groups of molecules as confirmed also by hierarchical clustering analysis. CONCLUSIONS: Unless exposed to most of the allergens in the same or related allergenic sources, a preferential IgE response to distinct panallergens has been recorded. Allergen microarray IgE testing increases our knowledge of the IgE immune response and related epidemiological features within and between homologous molecules better describing the patients' immunological phenotypes
    • …
    corecore