16 research outputs found

    Polymerase III transcription is necessary for T cell priming by dendritic cells

    Get PDF
    Exposure to microbe-associated molecular patterns (MAMPs) causes dendritic cells (DCs) to undergo a remarkable activation process characterized by changes in key biochemical mechanisms. These enhance antigen processing and presentation, as well as strengthen DC capacity to stimulate naïve T cell proliferation. Here, we show that in response to the MAMPS lipopolysaccharide and polyriboinosinic:polyribocytidylic acid (Poly I:C), RNA polymerase III (Pol lII)-dependent transcription and consequently tRNA gene expression are strongly induced in DCs. This is in part caused by the phosphorylation and nuclear export of MAF1 homolog negative regulator of Poll III (MAF1), via a synergistic casein kinase 2 (CK2)- and mammalian target of rapamycin-dependent signaling cascade downstream of Toll-like receptors (TLRs). De novo tRNA expression is necessary to augment protein synthesis and compensate for tRNA degradation driven by TLR-dependent DC exposure to type-I IFN. Although protein synthesis is not strongly inhibited in absence of RNA Pol III activity, it compromises the translation of key DC mRNAs, like those coding for costimulatory molecules and proinflammatory cytokines, which instead can be stored in stress granules, as shown for CD86 mRNA. TLR-dependent CK2 stimulation and subsequent RNA Pol III activation are therefore key for the acquisition by DCs of their unique T cell immune-stimulatory functions.publishe

    Cd98hc (slc3A2) sustains amino acid and nucleotide availability for cell cycle progression

    Get PDF
    CD98 heavy chain (CD98hc) forms heteromeric amino acid (AA) transporters by interacting with different light chains. Cancer cells overexpress CD98hc-transporters in order to meet their increased nutritional and antioxidant demands, since they provide branched-chain AA (BCAA) and aromatic AA (AAA) availability while protecting cells from oxidative stress. Here we show that BCAA and AAA shortage phenocopies the inhibition of mTORC1 signalling, protein synthesis and cell proliferation caused by CD98hc ablation. Furthermore, our data indicate that CD98hc sustains glucose uptake and glycolysis, and, as a consequence, the pentose phosphate pathway (PPP). Thus, loss of CD98hc triggers a dramatic reduction in the nucleotide pool, which leads to replicative stress in these cells, as evidenced by the enhanced DNA Damage Response (DDR), S-phase delay and diminished rate of mitosis, all recovered by nucleoside supplementation. In addition, proper BCAA and AAA availability sustains the expression of the enzyme ribonucleotide reductase. In this regard, BCAA and AAA shortage results in decreased content of deoxynucleotides that triggers replicative stress, also recovered by nucleoside supplementation. On the basis of our findings, we conclude that CD98hc plays a central role in AA and glucose cellular nutrition, redox homeostasis and nucleotide availability, all key for cell proliferation

    Assessing cell-specific effects of genetic variations using tRNA microarrays

    Get PDF
    Background: By definition, effect of synonymous single-nucleotide variants (SNVs) on protein folding and function are neutral, as they alter the codon and not the encoded amino acid. Recent examples indicate tissue-specific and transfer RNA (tRNA)-dependent effects of some genetic variations arguing against neutrality of synonymous SNVs for protein biogenesis. Results: We performed systematic analysis of tRNA abunandance across in various models used in cystic fibrosis (CF) research and drug development, including Fischer rat thyroid (FRT) cells, patient-derived primary human bronchial epithelia (HBE) from lung biopsies, primary human nasal epithelia (HNE) from nasal curettage, intestinal organoids, and airway progenitor-directed differentiation of human induced pluripotent stem cells (iPSCs). These were compared to an immortalized CF bronchial cell model (CFBE41o-) and two widely used laboratory cell lines, HeLa and HEK293. We discovered that specific synonymous SNVs exhibited differential effects which correlated with variable concentrations of cognate tRNAs. Conclusions: Our results highlight ways in which the presence of synonymous SNVs may alter local kinetics of mRNA translation; and thus, impact protein biogenesis and function. This effect is likely to influence results from mechansistic analysis and/or drug screeining efforts, and establishes importance of cereful model system selection based on genetic variation profile

    RqcH and RqcP catalyze processive poly-alanine synthesis in a reconstituted ribosome-associated quality control system

    No full text
    In the cell, stalled ribosomes are rescued through ribosome-associated protein quality-control (RQC) pathways. After splitting of the stalled ribosome, a C-terminal polyalanine 'tail' is added to the unfinished polypeptide attached to the tRNA on the 50S ribosomal subunit. In Bacillus subtilis, polyalanine tailing is catalyzed by the NEMF family protein RqcH, in cooperation with RqcP. However, the mechanistic details of this process remain unclear. Here we demonstrate that RqcH is responsible for tRNAAla selection during RQC elongation, whereas RqcP lacks any tRNA specificity. The ribosomal protein uL11 is crucial for RqcH, but not RqcP, recruitment to the 50S subunit, and B. subtilis lacking uL11 are RQC-deficient. Through mutational mapping, we identify critical residues within RqcH and RqcP that are important for interaction with the P-site tRNA and/or the 50S subunit. Additionally, we have reconstituted polyalanine-tailing in vitro and can demonstrate that RqcH and RqcP are necessary and sufficient for processivity in a minimal system. Moreover, the in vitro reconstituted system recapitulates our in vivo findings by reproducing the importance of conserved residues of RqcH and RqcP for functionality. Collectively, our findings provide mechanistic insight into the role of RqcH and RqcP in the bacterial RQC pathway

    Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A

    Get PDF
    In this work, we show that Not4 and Not5 from the Ccr4-Not complex modulate translation elongation dynamics and change ribosome A-site dwelling occupancy in a codon-dependent fashion. These codon-specific changes in not5Δ cells are very robust and independent of codon position within the mRNA, the overall mRNA codon composition, or changes of mRNA expression levels. They inversely correlate with codon-specific changes in cells depleted for eIF5A and positively correlate with those in cells depleted for ribosome-recycling factor Rli1. Not5 resides in punctate loci, co-purifies with ribosomes and Rli1, but not with eIF5A, and limits mRNA solubility. Overexpression of wild-type or non-complementing Rli1 and loss of Rps7A ubiquitination enable Not4 E3 ligase-dependent translation of polyarginine stretches. We propose that Not4 and Not5 modulate translation elongation dynamics to produce a soluble proteome by Rps7A ubiquitination, dynamic condensates that limit mRNA solubility and exclude eIF5A, and a moonlighting function of Rli1

    A comparison of hybrid excitation solutions for single-axis and bi-axial synchronous machines

    No full text
    Hybrid excitation synchronous machines are a class of machines that allow to reduce PM costs while keeping high torque density and that guarantee very high constant power speed range. They come in a wide variety of topologies and not all possible solutions have been explored yet. Aim of this paper is to provide a systematic analysis of all the possible configurations that can be obtained by changing the axis along which the hybrid excitation is placed. Both single-axis and bi-axial excitations are considered. A comparative analysis is carried out with respect to performance indices like torque capability, constant power speed range, power factor and losses

    Not1 and Not4 inversely determine mRNA solubility that sets the dynamics of co-translational events

    No full text
    Background: The Ccr4-Not complex is mostly known as the major eukaryotic deadenylase. However, several studies have uncovered roles of the complex, in particular of the Not subunits, unrelated to deadenylation and relevant for translation. In particular, the existence of Not condensates that regulate translation elongation dynamics has been reported. Typical studies that evaluate translation efficiency rely on soluble extracts obtained after the disruption of cells and ribosome profiling. Yet cellular mRNAs in condensates can be actively translated and may not be present in such extracts. Results: In this work, by analyzing soluble and insoluble mRNA decay intermediates in yeast, we determine that insoluble mRNAs are enriched for ribosomes dwelling at non-optimal codons compared to soluble mRNAs. mRNA decay is higher for soluble RNAs, but the proportion of co-translational degradation relative to the overall mRNA decay is higher for insoluble mRNAs. We show that depletion of Not1 and Not4 inversely impacts mRNA solubilities and, for soluble mRNAs, ribosome dwelling according to codon optimality. Depletion of Not4 solubilizes mRNAs with lower non-optimal codon content and higher expression that are rendered insoluble by Not1 depletion. By contrast, depletion of Not1 solubilizes mitochondrial mRNAs, which are rendered insoluble upon Not4 depletion. Conclusions: Our results reveal that mRNA solubility defines the dynamics of co-translation events and is oppositely regulated by Not1 and Not4, a mechanism that we additionally determine may already be set by Not1 promoter association in the nucleus.</p
    corecore