69 research outputs found
Application of MnOx β based electrodes into the industriel production of electric boilers
We have developed composite MnOx coated electrodes on
metal oxidized substrate. Simple carbon steel was used as the substrate. The MnOx
film was deposited electrochemically from an electrolyte containing monobasic
carboxylic acids. Mixed electroneutral complexes [Mn(L)2(H2O)4] formation ensured
the deposition of MnOx-based composite at low potentials. The corrosion resistance
of the obtained composite films was very high. The industrial tests of the developed
Fe, FeOy/MnOx electrodes showed their ability to work for at least 10000 hours.
The developed electrodes were introduced into the industrial production of
electric boilers "Energy" with direct heat carrier heating of various capacities, which
are used in residential premises and other facilities. Their long-term operation
confirmed their high performance characteristics
The mechanism of electrooxidation of Mn2+ ions
In this work the mechanisms of electrooxidation of Mn2+ to MnO2 were investigated in perchlorate, sulphate and acetate
solutions. Density functional theory (DFT), as a quantum modeling method, was used for identification of red-ox
potentials of one-electron oxidation of the aquacomplexes [Mn2+(H2O)6], [Mn2+(H2O)5(SO4
2-)]. The calculated values were
significantly higher than the measured potentials of the initial stages of complexes oxidation on Pt electrode. The
thermodynamical possibilities of formation of oxocomplexes and the kinetic measurements were analyzed. Based on
this data it has been found that in perchlorate and sulphate solutions (pH 4) Mn2+-iones were oxidized due to the
interaction with adsorbed β’OH-radicals, produced by the water-splitting reaction. For strongly acid sulphate solutions
(pH 1) it was observed the convergence of values of the potential of water-splitting reaction (1,2 V) and the potential of
oxidation of [Mn2+(H2O)5(ΠSO4
-)] complex (1,13V). This points to simultaneous implementation of two reaction paths:
the direct electrooxidation of Mn2+-iones and the oxidation due to the interaction with β’OH-radicals. The calculated value
of potential of electrooxidation of monoacetate aquacomplex of Mn2+-iones is notably low (0,66 V). This poin to the only
electrooxidation path of the reaction. The calculated data have been confirmed by the kinetic measurements. The
particles [Mn3+(H2O)5(ΠΡ-)] rapidly disproportionate to MnO2 and [Mn2+(H2O)5(ΠΡ-)] due to the features of carboxyl
group.
ΠΠ²Π°Π½ΡΠΎΠ²ΠΎ-Ρ
ΡΠΌΡΡΠ½ΠΈΠΉ Π°Π½Π°Π»ΡΠ· ΡΠ΅Π°ΠΊΡΡΠΉ ΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ Π³Π΅ΠΊΡΠ°Π°ΠΊΠ²Π°ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Mn2+ Ρ ΡΡ
Π΄Π΅ΡΠΊΠΈΡ
ΠΌΠΎΠ½ΠΎΠ·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΡΠΎΡΠΌ
ΠΏΠΎΠΊΠ°Π·Π°Π², ΡΠΎ ΡΡΠ°Π½Π΄Π°ΡΡΠ½Ρ ΠΎΠΊΠΈΡΠ»ΡΠ²Π°Π»ΡΠ½ΠΎ-Π²ΡΠ΄Π½ΠΎΠ²Π½Ρ ΠΏΠΎΡΠ΅Π½ΡΡΠ°Π»ΠΈ ΠΎΠ΄Π½ΠΎΠ΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ [Mn2+(H2O)6],
[Mn2+(H2O)5(SO4
2β)] ΡΡΡΠΎΡΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΈΡΡΡΡΡ Π·Π°ΡΠ΅ΡΡΡΡΠΎΠ²Π°Π½Ρ ΠΏΠΎΡΠ΅Π½ΡΡΠ°Π»ΠΈ ΠΏΠΎΡΠ°ΡΠΊΡ Π°Π½ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ ΡΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ²
Π½Π° ΠΏΠ»Π°ΡΠΈΠ½ΠΎΠ²ΠΎΠΌΡ Π΅Π»Π΅ΠΊΡΡΠΎΠ΄Ρ. Π’ΠΎΠΌΡ Π² ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°ΡΠ½ΠΈΡ
Ρ ΡΡΠ»ΡΡΠ°ΡΠ½ΠΈΡ
ΡΠΎΠ·ΡΠΈΠ½Π°Ρ
ΠΏΡΠΈ ΡΠ 4 ΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ Mn2+ Π·Π΄ΡΠΉΡΠ½ΡΡΡΡΡΡ
Ρ
ΡΠΌΡΡΠ½ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌΠΈ Π΅Π»Π΅ΠΊΡΡΠΎΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ Π²ΠΎΠ΄ΠΈ, ΠΏΠ΅ΡΠ΅Π²Π°ΠΆΠ½ΠΎ β’ΠΠ-ΡΠ°Π΄ΠΈΠΊΠ°Π»Π°ΠΌΠΈ, ΡΠΎ ΠΏΡΠ΄ΡΠ²Π΅ΡΠ΄ΠΆΠ΅Π½ΠΎ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ½ΠΈΠΌΠΈ
Π²ΠΈΠΌΡΡΠ°ΠΌΠΈ. Π£ ΠΊΠΈΡΠ»ΠΈΡ
ΡΡΠ»ΡΡΠ°ΡΠ½ΠΈΡ
ΡΠΎΠ·ΡΠΈΠ½Π°Ρ
(ΡΠ 1) Π· ΠΎΠ³Π»ΡΠ΄Ρ Π½Π° Π·Π±Π»ΠΈΠΆΠ΅Π½Π½Ρ ΠΏΠΎΡΠ΅Π½ΡΡΠ°Π»ΡΠ² Π΅Π»Π΅ΠΊΡΡΠΎΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ Π²ΠΎΠ΄ΠΈ (1,2
Π) Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ [Mn2+(H2O)5(ΠSO4
β)] (1,13 Π) Π°Π½ΠΎΠ΄Π½Π°Ρ ΡΠ΅Π°ΠΊΡΡΡ Π²ΠΊΠ»ΡΡΠ°Ρ Π΄Π²Π° ΠΌΠ°ΡΡΡΡΡΠΈ: ΠΏΡΡΠΌΠ΅ Π΅Π»Π΅ΠΊΡΡΠΎΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ
Mn2+ -ΡΠΎΠ½ΡΠ² Ρ ΡΡ
ΠΎΠΊΠΈΡΠ½Π΅Π½Π½Ρ β’ΠΠ-ΡΠ°Π΄ΠΈΠΊΠ°Π»Π°ΠΌΠΈ. ΠΠ° Π²ΡΠ΄ΠΌΡΠ½Ρ Π²ΡΠ΄ ΡΡΠΎΠ³ΠΎ, ΠΌΠΎΠ½ΠΎΠ°ΡΠ΅ΡΠ°ΡΠ½Ρ Π°ΠΊΠ²Π°ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΈ Mn2+, ΠΌΠ°ΡΡΠΈ
Π°Π½ΠΎΠΌΠ°Π»ΡΠ½ΠΎ Π½ΠΈΠ·ΡΠΊΠΈΠΉ ΠΎΠΊΠΈΡΠ»ΡΠ²Π°Π»ΡΠ½ΠΎ-Π²ΡΠ΄Π½ΠΎΠ²Π½ΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΡΠ°Π» (Ο0 = 0,66 Π), ΠΎΠΊΠΈΡΠ»ΡΡΡΡΡΡ ΡΡΠ»ΡΠΊΠΈ Π΅Π»Π΅ΠΊΡΡΠΎΡ
ΡΠΌΡΡΠ½ΠΈΠΌ
ΡΠ»ΡΡ
ΠΎΠΌ ΠΏΡΠΈ Ο = 0,8 Γ· 1,0 Π, (Π΄ΠΎ ΠΏΠΎΡΠ°ΡΠΊΡ ΡΠΎΠ·ΠΊΠ»Π°Π΄Π°Π½Π½Ρ Π²ΠΎΠ΄ΠΈ). Π£ΡΠ²ΠΎΡΠ΅Π½Ρ ΡΠ°ΡΡΠΊΠΈ [Mn4+(H2O)5(ΠΡβ)] ΡΠ²ΠΈΠ΄ΠΊΠΎ
Π΄ΠΈΡΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½ΡΡΡΡ Π΄ΠΎ MnO2 Π·Π°Π²Π΄ΡΠΊΠΈ ΠΌΠΎΡΡΠΈΠΊΠΎΠ²Ρ Π·Π²'ΡΠ·ΡΠ²Π°Π½Π½Ρ Π±ΡΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ Π°ΡΠ΅ΡΠ°Ρ-ΡΠΎΠ½ΠΎΠΌ.
ΠΠ²Π°Π½ΡΠΎΠ²ΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠ΅Π°ΠΊΡΠΈΠΉ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ Π³Π΅ΠΊΡΠ°Π°ΠΊΠ²Π°ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Mn2+ ΠΈ ΠΈΡ
Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠΎΠ½ΠΎΠ·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΡΠΎΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎ-Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Ρ ΠΎΠ΄Π½ΠΎΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ
[Mn2+(H2O)6], [Mn2+(H2O)5(SO4
2β)] ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΡΠ΅Π²ΡΡΠ°ΡΡ ΡΠ΅Π³ΠΈΡΡΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Ρ Π½Π°ΡΠ°Π»Π° Π°Π½ΠΎΠ΄Π½ΠΎΠ³ΠΎ
ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ ΡΡΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Π½Π° ΠΏΠ»Π°ΡΠΈΠ½ΠΎΠ²ΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π΅. ΠΠΎΡΡΠΎΠΌΡ Π² ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°ΡΠ½ΡΡ
ΠΈ ΡΡΠ»ΡΡΠ°ΡΠ½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
ΠΏΡΠΈ ΡΠ
4 ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠ΅ Mn2+ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅ΡΡΡ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ Π²ΠΎΠ΄Ρ, ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ β’ΠΠΡΠ°Π΄ΠΈΠΊΠ°Π»Π°ΠΌΠΈ, ΡΡΠΎ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΎ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ. Π ΠΊΠΈΡΠ»ΡΡ
ΡΡΠ»ΡΡΠ°ΡΠ½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
(ΡΠ 1) Π²Π²ΠΈΠ΄Ρ
ΡΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ Π²ΠΎΠ΄Ρ (1,2 Π) ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° [Mn2+(H2O)5(ΠSO4
β)] (1,13 Π) Π°Π½ΠΎΠ΄Π½Π°Ρ
ΡΠ΅Π°ΠΊΡΠΈΡ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π΄Π²Π° ΠΌΠ°ΡΡΡΡΡΠ°: ΠΏΡΡΠΌΠΎΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠ΅ Mn2+-ΠΈΠΎΠ½ΠΎΠ² ΠΈ ΠΈΡ
ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠ΅ β’ΠΠ-ΡΠ°Π΄ΠΈΠΊΠ°Π»Π°ΠΌΠΈ. Π
ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΡΡΠΎΠ³ΠΎ, ΠΌΠΎΠ½ΠΎΠ°ΡΠ΅ΡΠ°ΡΠ½ΡΠ΅ Π°ΠΊΠ²Π°ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ Mn2+, ΠΎΠ±Π»Π°Π΄Π°Ρ Π°Π½ΠΎΠΌΠ°Π»ΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΈΠΌ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ²ΠΎΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠΌ (Ο0 = 0,66 Π), ΠΎΠΊΠΈΡΠ»ΡΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈ ΠΏΡΠΈ Ο = 0,8Γ·1,0 Π, (Π΄ΠΎ
Π½Π°ΡΠ°Π»Π° ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π²ΠΎΠ΄Ρ). ΠΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅ΡΡ ΡΠ°ΡΡΠΈΡΡ [Mn4+(H2O)5(ΠΡβ)] Π±ΡΡΡΡΠΎ Π΄ΠΈΡΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½ΠΈΡΡΡΡ Π΄ΠΎ MnO2
Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΌΠΎΡΡΠΈΠΊΠΎΠ²ΠΎΠΌΡ ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ Π±ΠΈΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° Π°ΡΠ΅ΡΠ°Ρ-ΠΈΠΎΠ½ΠΎΠΌ
Cxcr4-ccr7 heterodimerization is a driver of breast cancer progression
Metastatic breast cancer has one of the highest mortality rates among women in western society. Chemokine receptors CXCR4 and CCR7 have been shown to be linked to the metastatic spread of breast cancer, however, their precise function and underlying molecular pathways leading to the acquisition of the pro-metastatic properties remain poorly understood. We demonstrate here that the CXCR4 and CCR7 receptor ligands, CXCL12 and CCL19, cooperatively bind and selectively elicit synergistic signalling responses in invasive breast cancer cell lines as well as primary mammary human tumour cells. Furthermore, for the first time, we have documented the presence of CXCR4-CCR7 heterodimers in advanced primary mammary mouse and human tumours where number of CXCR4-CCR7 complexes directly correlate with the severity of the disease. The functional significance of the CXCR4-CCR7 association was also demonstrated when their forced heterodimerization led to the acquisition of invasive phenotype in non-metastatic breast cancer cells. Taken together, our data establish the CXCR4-CCR7 receptor complex as a new functional unit, which is responsible for the acquisition of breast cancer cell metastatic phenotype and which may serve as a novel biomarker for invasive mammary tumours.Valentina Poltavets, Jessica W. Faulkner, Deepak Dhatrak, Robert J. Whitfield, Shaun R. McColl and Marina Kochetkov
The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells
The chemokine receptor CCR7 is widely implicated in breast cancer pathobiology. Although recent reports correlated high CCR7 levels with more advanced tumor grade and poor prognosis, limited in vivo data are available regarding its specific function in mammary gland neoplasia and the underlying mechanisms involved. To address these questions we generated a bigenic mouse model of breast cancer combined with CCR7 deletion, which revealed that CCR7 ablation results in a considerable delay in tumor onset as well as significantly reduced tumor burden. Importantly, CCR7 was found to exert its function by regulating mammary cancer stem-like cells in both murine and human tumors. In vivo experiments showed that loss of CCR7 activity either through deletion or pharmacological antagonism significantly decreased functional pools of stem-like cells in mouse primary mammary tumors, providing a mechanistic explanation for the tumor-promoting role of this chemokine receptor. These data characterize the oncogenic properties of CCR7 in mammary epithelial neoplasia and point to a new route for therapeutic intervention to target evasive cancer stem cells.ST Boyle, WV Ingman, V Poltavets, JW Faulkner, RJ Whitfield, SR McColl, and M Kochetkov
The principal properties of molibdenum-phosphate heteropolianions and their application as catalysts
Polyoxometallates (POMs) are increasingly used as electrocatalysts for the determination of several types of species. Dawson
and Keggin-type heteropoly anions are preferentially used in industry as catalysts. Properties of Dawson-type
molybdophosphate heteropoly anions are discussed in the present review. Electrochemical behavior of Keggin- and Dawsontype molybdophosphate heteropoly anions has been reviewed. The oxidation-reduction potentials of electron reductions of
the [P2Mo18O62]
6β anion in solutions with various pH and in different media are cited. Special focus is made on methods of
designing of electrodes modified by POMs. The most common deposition techniques of POMs include chemisorption,
electrodeposition, encapsulation in polymers or solβgels, and formation of hybrid POMβorganic species. Advantages and
disadvantages of various techniques are discussed. Modified electrodes are characterized by electrochemical stability,
shifting of characteristic peaks and sensitivity to pH change.
ΠΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ Π΅Π»Π΅ΠΊΡΡΠΎΡ
ΡΠΌΡΡΠ½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ Ρ ΡΡΠ°Π±ΡΠ»ΡΠ½ΠΎΡΡΡ ΠΌΠΎΠ»ΡΠ±Π΄ΠΎΡΠΎΡΡΠΎΡΠ½ΠΈΡ
Π³Π΅ΡΠ΅ΡΠΎΠΏΠΎΠ»ΡΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡiΠ² ΡΡΡΡΠΊΡΡΡΠΈ ΠΠ΅Π³Π³ΡΠ½Π° Ρ ΠΠΎΡΡΠΎΠ½Π°. ΠΠΈΠ·Π½Π°ΡΠ΅Π½ΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Ρ ΠΏΠΎΡΠ΅Π½ΡΡΠ°Π»ΠΈ Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΈΡ
ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΡΠ² 18-ΠΠ€Π ΡΠ° ΡΡ
Π·Π°Π»Π΅ΠΆΠ½ΡΡΡΡ Π²ΡΠ΄ ΡΠ Ρ Π²ΠΎΠ΄Π½ΠΈΡ
ΡΠΎΠ·ΡΠΈΠ½Π°Ρ
. Π ΠΎΠ·Π³Π»ΡΠ½ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈ ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ
Π΅Π»Π΅ΠΊΡΡΠΎΠ΄ΡΠ², ΠΌΠΎΠ΄ΠΈΡΡΠΊΠΎΠ²Π°Π½ΠΈΡ
ΠΠΠ, ΡΠ° ΠΏΠΎΡΡΠ²Π½ΡΡΡΡΡΡ ΡΡ
ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡ iΠ· Π²ΠΈΡ
ΡΠ΄Π½ΠΈΠΌΠΈ ΡΠ΅ΡΠΎΠ²ΠΈΠ½Π°ΠΌΠΈ.
ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΠΈ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ
ΠΌΠΎΠ»ΠΈΠ±Π΄ΠΎΡΠΎΡΡΠΎΡΠ½ΡΡ
Π³Π΅ΡΠ΅ΡΠΎΠΏΠΎΠ»ΠΈΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΡΡΡΡΠΊΡΡΡΡ ΠΠ΅Π³Π³ΠΈΠ½Π° ΠΈ ΠΠΎΡΡΠΎΠ½Π°. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠ΅
ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΎΠ² 18-ΠΠ€Π ΠΈ ΠΈΡ
Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΎΡ ΡΠ Π² Π²ΠΎΠ΄Π½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ
ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΎΠ², ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΠΠ, ΠΈ ΡΡΠ°Π²Π½ΠΈΠ²Π°ΡΡΡΡ ΠΈΡ
ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅
ΡΠ²ΠΎΠΉΡΡΠ²Π° Ρ ΠΈΡΡ
ΠΎΠ΄Π½ΡΠΌΠΈ Π²Π΅ΡΠ΅ΡΡΠ°Π²Π°ΠΌΠΈ
- β¦